Journal of Materials Science

, Volume 48, Issue 10, pp 3812–3824 | Cite as

Effect of consolidation pressure on volumetric composition and stiffness of unidirectional flax fibre composites

Article

Abstract

Unidirectional flax/polyethylene terephthalate composites are manufactured by filament winding, followed by compression moulding with low and high consolidation pressure, and with variable flax fibre content. The experimental data of volumetric composition and tensile stiffness are analysed with analytical models, and the composite microstructure is assessed by microscopy. The higher consolidation pressure (4.10 vs. 1.67 MPa) leads to composites with a higher maximum attainable fibre volume fraction (0.597 vs. 0.530), which is shown to be well correlated with the compaction behaviour of flax yarn assemblies. A characteristic microstructural feature is observed near the transition stage, the so-called local structural porosity, which is caused by the locally fully compacted fibres. At the transition fibre weight fraction, which determines the best possible combination of high fibre volume fraction and low porosity, the high pressure composites show a higher maximum performance in terms of tensile stiffness (40 vs. 35 GPa). The good agreement with the model calculations (fibre compaction behaviour, and composite volumetric composition and mechanical properties), allows the making of a property diagram showing stiffness of unidirectional flax fibre composites as a function of fibre weight fraction for consolidation pressures in the range 0–10 MPa.

References

  1. 1.
    Pickering KL (2008) Properties and performance of natural fibre composites. Woodhead Publishing, CambridgeCrossRefGoogle Scholar
  2. 2.
    Müssig J, Stevens C (2010) Industrial applications of natural fibres: structure. properties and technical applications. Wiley, ChichesterCrossRefGoogle Scholar
  3. 3.
    Bunsell AR, Renard J (2005) Fundamentals of fibre reinforced composite materials. Taylor & Francis, LondonCrossRefGoogle Scholar
  4. 4.
    Goutianos S, Peijs T, Nystrom B, Skrifvars M (2006) Appl Compos Mater 13:199CrossRefGoogle Scholar
  5. 5.
    Charlet K, Jernot JP, Eve S, Gomina M, Bréard J (2010) Carbohydr Polym 82:54CrossRefGoogle Scholar
  6. 6.
    Gassan J, Bledzki AK (2001) J Appl Polym Sci 82:1417. doi:10.1002/app.1979 CrossRefGoogle Scholar
  7. 7.
    Madsen B, Lilholt H (2003) Compos Sci Technol 63:1265. doi:10.1016/s0266-3538(03)00097-6 CrossRefGoogle Scholar
  8. 8.
    Davé RS, Loos AC (2000) Processing of composites. Hanser Publishers, MunichCrossRefGoogle Scholar
  9. 9.
    Madsen B, Thygesen A, Lilholt H (2007) Compos Sci Technol 67:1584. doi:10.1016/j.compscitech.2006.07.009 CrossRefGoogle Scholar
  10. 10.
    Madsen B, Hoffmeyer P, Lilholt H (2007) Compos A 38:2204. doi:10.1016/j.compositesa.2007.06.002 CrossRefGoogle Scholar
  11. 11.
    Michaud V, Månson JAE (2001) J Compos Mater 35:1150CrossRefGoogle Scholar
  12. 12.
    Madsen B, Thygesen A, Lilholt H (2009) Compos Sci Technol 69:1057. doi:10.1016/j.compscitech.2009.01.016 CrossRefGoogle Scholar
  13. 13.
    Krenchel H (1964) Fibre reinforcement. Akademisk forlag, CopenhagenGoogle Scholar
  14. 14.
    Cox HL (1952) Br J Appl Phys 3:72CrossRefGoogle Scholar
  15. 15.
    Madsen B (2004) PhD thesis, Technical University of Denmark, Department of Civil EngineeringGoogle Scholar
  16. 16.
    Aslan M, Chinga-Carrasco G, Sorensen BF, Madsen B (2011) J Mater Sci 46:6344. doi:10.1007/s10853-011-5581-x CrossRefGoogle Scholar
  17. 17.
    Toll S (1998) Polym Eng Sci 38:1337CrossRefGoogle Scholar
  18. 18.
    Gutowski TG, Morigaki T, Cai Z (1987) J Compos Mater 21:172CrossRefGoogle Scholar
  19. 19.
    B Madsen, H Lilholt (2002) Proceedings of 23rd Risø international symposium on materials science, Roskilde p. 239Google Scholar
  20. 20.
    Mehmood S, Madsen B (2012) J Reinf Plast Compos 31:1746. doi:10.1177/0731684412441686 CrossRefGoogle Scholar
  21. 21.
    Madsen B, Hoffmeyer P, Thomsen AB, Lilholt H (2007) Compos A 38:2194. doi:10.1016/j.compositesa.2007.06.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Metallurgy and Material Engineering, Faculty of EngineeringKaradeniz Technical UniversityTrabzonTurkey
  2. 2.School of EngineeringSwansea UniversitySwanseaUK
  3. 3.Composites and Materials Mechanics, Department of Wind EnergyTechnical University of DenmarkRoskildeDenmark

Personalised recommendations