Advertisement

Journal of Materials Science

, Volume 48, Issue 10, pp 3805–3811 | Cite as

Electronic structure, density of electronic states, and the chemical bonding properties of 2,4-dihydroxyl hydrazone crystals (C13H11N3O4)

  • A. H. Reshak
  • H. Kamarudin
  • S. Auluck
Article

Abstract

Electronic crystal structure, bonding properties, and the electron charge densities of 2,4-dihydroxybenzaldehyde-4-nitrophenylhydrazone (2,4-DHNPH,C13H11N3O4) crystal are theoretically investigated. Calculations are performed with local density approximation, generalized gradient approximation, the Engel–Vosko generalized gradient approximation, and modified Becke–Johnson potential. We present the results of the total and partial (C, N, O, H atoms) density of states. Furthermore, the electronic charge density space distribution contours in the (1 1 0) crystallographic plane, which gives better insight picture of chemical bonding were calculated to understand the effect of hydrogen bonding on the crystal structure of 2,4-DHNP.

Keywords

Generalize Gradient Approximation Local Density Approximation Electronic Band Structure Conduction Band Minimum Electron Charge Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported from the institutional research concept of the project CENAKVA (No. CZ.1.05/2.1.00/01.0024), the grant No. 152/2010/Z of the Grant Agency of the University of South Bohemia. The School of Materials Engineering, University Malaysia Perlis (UniMAP), Perlis, Malaysia. SA would like to thank NPL for financial assistance.

Supplementary material

10853_2013_7181_MOESM1_ESM.cif (12 kb)
Supplementary material 1 (CIF 12 kb)
10853_2013_7181_MOESM2_ESM.cif (2 kb)
Supplementary material 2 (CIF 2 kb)

References

  1. 1.
    Reshak AH, Stys D, Auluck S, Kityk IV (2010) PCCP 12:2975CrossRefGoogle Scholar
  2. 2.
    Reshak AH, Kamarudin H, Auluck S, Minofar B, Kityk IV (2011) Appl Phys Lett 98:201903CrossRefGoogle Scholar
  3. 3.
    Wojciechowski A, Kityk IV, Reshak AH, Miedzinski R, Ozga K, Berdowski J, Tylczyński Z (2010) Mater Lett 64:1957CrossRefGoogle Scholar
  4. 4.
    Reshak AH, Stys D, Auluck S, Kityk IV, Kamarudin H (2011) Mater Chem Phys 130:458CrossRefGoogle Scholar
  5. 5.
    Reshak AH, Stys D, Auluck S, Kityk IV (2010) J Phys Chem B 114:1815CrossRefGoogle Scholar
  6. 6.
    Reshak AH, Stys D, Auluck S, Kityk IV (2011) PCCP 13:2945CrossRefGoogle Scholar
  7. 7.
    Reshak AH, Auluck S, Stys D, Kityk IV, Kamarudin H, Berdowski J, Tylczynski Z (2011) J Mater Chem 21:17219CrossRefGoogle Scholar
  8. 8.
    Kwon OP, Jazbinsek M, Seo JI, Choi EY, Yun H, Brunner FDJ, Lee YS, Günter P (2009) J Chem Phys 130:134708CrossRefGoogle Scholar
  9. 9.
    Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2K, “an Augmented Plane Wave + Local orbitals program for calculating crystal properties”. Karlheinz Schwarz Techn, Universitat Wien, Vienna. ISBN 3-9501031-1-2Google Scholar
  10. 10.
    Hohenberg P, Kohn W (1964) Phys Rev B 136:864CrossRefGoogle Scholar
  11. 11.
    Ceperley DM, Ader BI (1980) Phys Rev Lett 45:566CrossRefGoogle Scholar
  12. 12.
    Perdew JP, Zunger A (1973) Phys Rev B 8:4822CrossRefGoogle Scholar
  13. 13.
    Perdew JP, Burke S, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  14. 14.
    Engel E, Vosko SH (1993) Phys Rev B 47:13164CrossRefGoogle Scholar
  15. 15.
    Tran F, Blaha P (2009) Phys Rev Lett 102:226401CrossRefGoogle Scholar
  16. 16.
    Bures F, Cermakova H, Kulhanek J, Ludwig M, Mikysek T, Ruzicka A (2012) Eur J Org Chem 2012(3):529CrossRefGoogle Scholar
  17. 17.
    Schafer J, Scheurer M, Speiser B, Kuznik W (2012) Spectrochim Acta A Mol Biomol Spectrosc 95A:193CrossRefGoogle Scholar
  18. 18.
    Desiraju GR (2002) Acc Chem Res 35:565CrossRefGoogle Scholar
  19. 19.
    Aakeroy CB, Seddon KR (1993) Chem Soc Rev 22:397CrossRefGoogle Scholar
  20. 20.
    Saha BK, Nangia A, Jaskolski M (2005) Cryst Eng Comm 7:355CrossRefGoogle Scholar
  21. 21.
    Russell VA, Etter MC, Ward MD (1994) J Am Chem Soc 116:1941CrossRefGoogle Scholar
  22. 22.
    Huang KS, Britton D, Etter MC, Byrn SR (1995) J Mater Chem 5:379CrossRefGoogle Scholar
  23. 23.
    Panunto TW, Urbanczyk-Lipkowska Z, Johnson R, Etter MC (1987) J Am Chem Soc 109:7786CrossRefGoogle Scholar
  24. 24.
    Custelcean R (2008) Chem Commun (Cambridge) 295Google Scholar
  25. 25.
    Yin Z, Li Z (2006) Tetrahedron Lett 47:7875CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CBCeske BudejoviceCzech Republic
  2. 2.School of Material Engineering, Malaysia University of PerlisKangarMalaysia
  3. 3.National Physical LaboratoryNew DelhiIndia

Personalised recommendations