Journal of Materials Science

, Volume 48, Issue 10, pp 3789–3797 | Cite as

Structural, optical, and electrical properties of indium-doped cadmium oxide films prepared by pulsed filtered cathodic arc deposition

  • Yuankun Zhu
  • Rueben J. Mendelsberg
  • Jiaqi Zhu
  • Jiecai Han
  • André Anders


Indium-doped cadmium oxide (CdO:In) films were prepared on glass and sapphire substrates by pulsed filtered cathodic arc deposition (PFCAD). The effects of substrate temperature, oxygen pressure, and an MgO template layer on film properties were systematically studied. The MgO template layers significantly influence the microstructure and the electrical properties of CdO:In films, but show different effects on glass and sapphire substrates. Under optimized conditions on glass substrates, CdO:In films with thickness of about 125 nm showed low resistivity of 5.9 × 10−5 Ωcm, mobility of 112 cm2/Vs, and transmittance over 80 % (including the glass substrate) from 500 to 1500 nm. The optical bandgap of the films was found to be in the range of 2.7 to 3.2 eV using both the Tauc relation and the derivative of transmittance. The observed widening of the optical bandgap with increasing carrier concentration can be described well only by considering bandgap renormalization effects along with the Burstein–Moss shift for a nonparabolic conduction band.


Carrier Concentration Optical Bandgap Sapphire Substrate Aluminum Dope Zinc Oxide PbI2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank K.M. Yu and S.H.N. Lim for their contributions to this work. Research was supported by the LDRD Program of Lawrence Berkeley National Laboratory, by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, of the U.S. Department of Energy under U.S. Department of Energy Contract No. DE-AC02-05CH11231. Additional support was provided by the National Natural Science Foundation of China (Grant No.51072039 and 51222205), and the Ph.D. Programs Foundation of the Ministry of Education of China (20112302110036).


  1. 1.
    Lim JT, Jeong CH, Vozny A, Lee JH, Kim MS, Yeom GY (2007) Surf Coat Tech 201:5358CrossRefGoogle Scholar
  2. 2.
    Santos-Cruz J, Torres-Delgado G, Castanedo-Pérez R, Jiménez-Sandoval S, Márquez-Marín J, Zelaya-Angel O (2006) Sol Energy Mater Sol Cells 90:2272CrossRefGoogle Scholar
  3. 3.
    Anna Selvan JA, Delahoy AE, Guo S, Li Y-M (2006) Sol Energy Mater Sol Cells 90:3371CrossRefGoogle Scholar
  4. 4.
    Wang A (2001) Proc Natl Acad Sci 98:7113CrossRefGoogle Scholar
  5. 5.
    Ueda N, Maeda H, Hosono H, Kawazoe H (1998) J Appl Phys 84:6174CrossRefGoogle Scholar
  6. 6.
    Jin S, Yang Y, Medvedeva JE, Wang L, Li S, Cortes N, Ireland JR, Metz AW, Ni J, Hersam MC, Freeman AJ, Marks TJ (2008) Chem Mater 20:220CrossRefGoogle Scholar
  7. 7.
    Yan M, Lane M, Kannewurf CR, Chang RPH (2001) Appl Phys Lett 78:2342CrossRefGoogle Scholar
  8. 8.
    Gupta RK, Ghosh K, Patel R, Kahol PK (2009) Appl Surf Sci 255:6252CrossRefGoogle Scholar
  9. 9.
    Freeman AJ, Poeppelmeier KR, Mason TO, Chang RPH, Marks TJ (2000) MRS Bull 25:45CrossRefGoogle Scholar
  10. 10.
    Zhu Y, Mendelsberg RJ, Zhu J, Han J, Anders A (2012) Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition. Appl Surf Sci (In Press)Google Scholar
  11. 11.
    Dakhel AA (2011) J Mater Sci 46:6925. doi: 10.1007/s10853-011-5658-6 CrossRefGoogle Scholar
  12. 12.
    Ismail RA, Rasheed BG, Salm ET, Al-Hadethy M (2007) J Mater Sci 18:1027. doi: 10.1007/s10854-007-9129-4 Google Scholar
  13. 13.
    Dakhel AA (2009) Opt Mater 31:691CrossRefGoogle Scholar
  14. 14.
    Jain SC, McGregor JM, Roulston DJ (1990) J Appl Phys 68:3747CrossRefGoogle Scholar
  15. 15.
    Hamberg I, Granqvist CG, Berggren KF, Sernelius BE, Engström L (1984) Phys Rev B 30:3240CrossRefGoogle Scholar
  16. 16.
    Burstein E (1954) Phys Rev 93:632CrossRefGoogle Scholar
  17. 17.
    Berggren K, Sernelius B (1981) Phys Rev B 24:1971CrossRefGoogle Scholar
  18. 18.
    Lu JG, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Ye ZZ, Zeng YJ, Zhang YZ, Zhu LP, He HP, Zhao BH (2007) J Appl Phys 101:083705CrossRefGoogle Scholar
  19. 19.
    Kim CE, Moon P, Kim S, Myoung JM, Jang HW, Bang J, Yun I (2010) Thin Solid Films 518:6304CrossRefGoogle Scholar
  20. 20.
    Jefferson PH, Hatfield SA, Veal TD, King PDC, McConville CF, Zúñiga–Pérez J, Muñoz–Sanjosé V (2008) Appl Phys Lett 92:022101CrossRefGoogle Scholar
  21. 21.
    Speaks DT, Mayer MA, Yu KM, Mao SS, Haller EE, Walukiewicz W (2010) J Appl Phys 107:113706CrossRefGoogle Scholar
  22. 22.
    Pisarkiewicz T, Zakrewska K, Leja E (1989) Thin Solid Films 174:217CrossRefGoogle Scholar
  23. 23.
    Zhao Z, Morel DL, Ferekides CS (2002) Thin Solid Films 413:203CrossRefGoogle Scholar
  24. 24.
    Zheng BJ, Lian JS, Zhao L, Jiang Q (2010) Appl Surf Sci 256:2910CrossRefGoogle Scholar
  25. 25.
    Deokate RJ, Salunkhe SV, Agawane GL, Pawar BS, Pawar SM, Rajpure KY, Moholkar AV, Kim JH (2010) J Alloys Compd 496:357CrossRefGoogle Scholar
  26. 26.
    Dou Y, Egdell RG, Walker T, Law DSL, Beamson G (1998) Surf Sci 398:241CrossRefGoogle Scholar
  27. 27.
    Saha B, Thapa R, Chattopadhyay K (2008) Solid State Commun 145:33CrossRefGoogle Scholar
  28. 28.
    Segura A, Sánchez-Royo JF, García-Domene B, Almonacid G (2011) Appl Phys Lett 99:151907CrossRefGoogle Scholar
  29. 29.
    Anders A, Lim SHN, Yu KM, Andersson J, Rosén J, McFarland M, Brown J (2010) Thin Solid Films 518:3313CrossRefGoogle Scholar
  30. 30.
    Goldsmith S (2006) Surf Coat Tech 201:3993CrossRefGoogle Scholar
  31. 31.
    Wang L, Yang Y, Jin S, Marks TJ (2006) Appl Phys Lett 88:162115CrossRefGoogle Scholar
  32. 32.
    Anders A, MacGill RA, McVeigh TA (1999) Rev Sci Instrum 70:4532CrossRefGoogle Scholar
  33. 33.
    Mendelsberg RJ, Lim SHN, Zhu YK, Wallig J, Milliron DJ, Anders A (2011) J Phys D Appl Phys 44:232003CrossRefGoogle Scholar
  34. 34.
    Choi CG, No K, Lee WJ, Kim HG, Jung SO, Lee WJ, Kim WS, Kim SJ, Yoon C (1995) Thin Solid Films 258:274CrossRefGoogle Scholar
  35. 35.
    Li X, Yan Y, Mason A, Gessert TA, Coutts TJ (2001) Electrochem Solid-State Lett 4:C66CrossRefGoogle Scholar
  36. 36.
    Li X, Young DL, Moutinho H, Yan Y, Narayanswamy C, Gessert TA, Coutts TJ (2001) Electrochem Solid-State Lett 4:C43CrossRefGoogle Scholar
  37. 37.
    Mendelsberg RJ, Zhu Y, Anders A (2012) J Phys D Appl Phys 45:425302CrossRefGoogle Scholar
  38. 38.
    Ferreira da Silva A, Veissid N, An CY, Pepe I, Barros de Oliveira N, Batista da Silva AV (1996) Appl Phys Lett 69:1930CrossRefGoogle Scholar
  39. 39.
    Veissid N, An CY, Ferreira da Silva A, Pinto de Souza JI (1999) Mat Res 2:279CrossRefGoogle Scholar
  40. 40.
    Sernelius BE, Berggren KF, Jin ZC, Hamberg I, Granqvist CG (1988) Phys Rev B 37:10244CrossRefGoogle Scholar
  41. 41.
    Coutts TJ, Young DL, Li X (2000) J Vac Sci Technol A 18:2646CrossRefGoogle Scholar
  42. 42.
    Jain SC, Roulston DJ (1991) Solid-State Eletron 34:453CrossRefGoogle Scholar
  43. 43.
    Finkenrath H, Von Ortenberg M (1967) Z Angew Phys 23:323Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yuankun Zhu
    • 1
    • 2
  • Rueben J. Mendelsberg
    • 2
    • 3
  • Jiaqi Zhu
    • 1
  • Jiecai Han
    • 1
  • André Anders
    • 2
  1. 1.Harbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.Lawrence Berkeley National LaboratoryPlasma Applications GroupBerkeleyUSA
  3. 3.Materials Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations