Journal of Materials Science

, Volume 48, Issue 10, pp 3745–3759 | Cite as

DC-conductivity testing combined with photometry for measuring fibre orientations in SFRC



The orientation distribution of fibres has an important impact on the properties of short-fibre reinforced composites. This article introduces a methodology for defining fibre orientations in steel fibre reinforced concrete (SFRC). The main method under consideration is the slicing, where two approaches are introduced, i.e. the photometric analysis and DC-conductivity measurements by a special robot. The advantage of presented slicing method is the fact that a combined analysing approach is utilized; DC-conductivity testing is joined together with the image analysis. As a result, significant benefits are achieved, e.g. the ability of measuring the orientation of an individual fibre, the measuring of the in-plane angle in the interval [0°, 360°]. An additional important aspect in the presented slicing method is the possible usage of the structural parts extracted from the full-size floor-slabs as specimens, as it is done here. The authors present the statistics of fibre orientations, which are based on the experimental data received by the application of the mentioned analysing approaches. The presented slicing method with its possible extensions offers possibilities to improve the quality control while producing SFRC products.


  1. 1.
    Wang Y, Zureick AH, Cho BS, Scott DE (1994) Properties of fibre reinforced concrete using recycled fibres from carpet industrial waste. J Mater Sci, 29:4191–4199. 10.1007/BF00414198
  2. 2.
    Purnell P, Buchanan AJ, Short NR, Page CL, Majumdar AJ (2000) Determination of bond strength in glass fibre reinforced cement using petrography and image analysis. J Mater Sci, 35:4653–4659, doi:10.1023/A:1004882419034.
  3. 3.
    Tejchman J, Kozicki J (2010) Experimental and theoretical investigations of steel-fibrous concrete. Springer series in geomechanics and geoengineering 3 1st edn. Springer, DordrechtCrossRefGoogle Scholar
  4. 4.
  5. 5.
    Schnell J, Breit W, Schuler F (2011) Use of computer-tomography for the analysis of fibre reinforced concrete. In: Sruma V (ed) Proceedings of the fib Symposium Prague 2011, p 583–586Google Scholar
  6. 6.
    Ferrara L, Faifer M, Toscani S (2011) Mater Struct 1–15. 10.1617/s11527-011-9793-y
  7. 7.
    Stroeven P, Hu J (2006) Review paper – stereology: Mater Struct 39:127–135. doi:10.1617/s11527-005-9031-6. Google Scholar
  8. 8.
    Wuest J, Denarié E, Brühwiler E, Tamarit L, Kocher M, Gallucci E (2009) Exp Tech 33(5):50–55. doi:10.1111/j.1747-1567.2008.00420.x.
  9. 9.
    Laranjeira de Oliveira F (2010) Design-oriented constitutive model for steel fiber reinforced concrete. Ph.D. thesis, Universitat Politecnica de Catalunya, Barcelona.
  10. 10.
    Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete. Ph.D. thesis, Technische Universiteit Delft, Delft.
  11. 11.
    Barnett S, Lataste JF, Parry T, Millard S, Soutsos M (2010) Mater Struct 43:1009–1023. doi:10.1617/s11527-009-9562-3.
  12. 12.
    Redon C, Chermant L, Chermant JL, Coster M (1998) J Microsc 191(3):258–265. doi:10.1046/j.1365-2818.1998.00393.x.
  13. 13.
    Ferrara L, Ozyurt N, di Prisco M (2011) Mater Struct 44:109–128. doi:10.1617/s11527-010-9613-9.
  14. 14.
    Barragán BE, Gettu R, Martin MA, Zerbino RL (2003) Cem Concr Compos 25(7):767–777. doi:10.1016/S0958-9465(02)00096-3.
  15. 15.
    Laranjeira F, Grünewald S, Walraven J, Blom K, Molins C, Aguadoa A (2011) Mater Struct 44:1093–1111. doi:10.1617/s11527-010-9686-5. Google Scholar
  16. 16.
    Laranjeira F, Molins C, Aguado A (2010) Cem Concr Res 40(10):1471–1487. doi:10.1016/j.cemconres.2010.05.005.
  17. 17.
    Redon C, Chermant L, Chermant JL, Coster M (1999) Cem Concr Compos 21(5-6):403 – 412. doi:10.1016/S0958-9465(99)00025-6.
  18. 18.
    Ozyurt N, Mason TO, Shah SP (2007) Non-destructive monitoring of fiber dispersion in FRCS using ac-impedance spectroscopy. In: Measuring, monitoring and modeling concrete properties, Springer, Dordrecht, p 285–290. doi:10.1007/978-1-4020-5104-3.
  19. 19.
    Lataste J, Behloul M, Breysse D (2008) Characterisation of fibres distribution in a steel fibre reinforced concrete with electrical resistivity measurements. NDT& E Int 41(8):638–647. doi:10.1016/j.ndteint.2008.03.008.
  20. 20.
    Dumont P, Corre SL, Orgéas L, Favier D (2009) A numerical analysis of the evolution of bundle orientation in concentrated fibre-bundle suspensions. J Non-Newton Fluid Mech 160(2–3):76–92. doi:10.1016/j.jnnfm.2009.03.001. Google Scholar
  21. 21.
    Le TH, Dumont P, Orgéas L, Favier D, Salvo L, Boller E (2008) X-ray phase contrast microtomography for the analysis of the fibrous microstructure of smc composites. Compos Part A: Appl Sci Manuf 39(1):91–103. doi:10.1016/j.compositesa.2007.08.027.
  22. 22.
    Krause M, Hausherr J, Burgeth B, Herrmann C, Krenkel W (2010) Determination of the fibre orientation in composites using the structure tensor and local x-ray transform. J Mater Sci 45:888–896. doi:10.1007/s10853-009-4016-4.
  23. 23.
    Bronstein IN, Semendjajew KA, Musiol G, Muehlig H (2007) Handbook of mathematics 5th edn. Springer, DordrechtGoogle Scholar
  24. 24.
    Stroeven P (1986) Stereology of concrete reinforced with short steel fibres. Ph.D. thesis, Technische Universiteit Delft, Delft.
  25. 25.
    Abrámoff MD, aes PJM, Ram SJ (2004) Biophotonics Int 11(7):36–42Google Scholar
  26. 26.
    Collins T (2004) Pseudo-flat field filter for imagej.
  27. 27.
    Eik M, Herrmann H (2012) Proc Est Acad Sci 61:128–136. doi:10.3176/proc.2012.2.05 CrossRefGoogle Scholar
  28. 28.
    Buffiere J, Maire E, Adrien J, Masse J, Boller E (2010) Exp Mech 50:289–305.
  29. 29.
    Penttilä P, Suuronen JP, Kirjoranta S, Peura M, Jouppila K, Tenkanen M, Serimaa R (2011) J Mater Sci 46:3470–3479. doi:10.1007/s10853-011-5252-y, Google Scholar
  30. 30.
    Leppänen K, Bjurhager I, Peura M, Kallonen A, Suuronen JP, Penttilä P, Love J, Fagerstedt K, Serimaa R (2011) X-ray scattering and microtomography study on the structural changes of never-dried silver birch, european aspen and hybrid aspen during drying. Holzforschung, pp. 777–897. doi:10.1515/HF.2011.108.
  31. 31.
    Suuronen JP, Kallonen A, Eik M, Puttonen J, Serimaa R, Herrmann H (2012) J Mater Sci 48(3)4358–4367. doi:10.1007/s10853-012-6882-4.
  32. 32.
    Stähli P, Custer R, van Mier J (2008) Mater Struct 41:189–196. doi:10.1617/s11527-007-9229-x.
  33. 33.
    Emc2 (enhanced machine controller)., software.
  34. 34.
    Sekhon JS (2010) Matching: multivariate and propensity score matching with balance optimization., r package version 4.7-11
  35. 35.
    Delignette-Muller ML, Pouillot R, Denis JB, Dutang C (2010) Fitdistrplus: help to fit of a parametric distribution to non-censored or censored data. R package version 0.1–3Google Scholar
  36. 36.
    Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York, 4th edn.,iSBN 0-387-95457-0
  37. 37.
    Stephenson AG (2002) R News 2(2):31–32.
  38. 38.
    Pouillot R, Delignette-Muller ML (2010) Int J Food Microbiol 142(3):330–40. doi:10.1016/j.ijfoodmicro.2010.07.011 CrossRefGoogle Scholar
  39. 39.
    Adler D, Murdoch D (2010) rgl: 3D visualization device system (OpenGL)., r package version 0.91
  40. 40.
    Wuertz D (2009) many others, see the SOURCE file fMultivar: multivariate market analysis., r package version2100.76
  41. 41.
    Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A (2011) e1071: Misc functions of the department of statistics (e1071), TU Wien., r package version 1.5-25
  42. 42.
    Poncet P (2010) Modeest: Mode Estimation., r package version 1.14
  43. 43.
    Development Core Team R (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria,, ISBN 3-900051-07-0
  44. 44.
    Casella G, Berger JO (2001) Statistical Inference 2nd edn. Duxbury Press, BelmontGoogle Scholar
  45. 45.
    Herrmann H, Eik M (2011) Proc Est Acad Sci 60(3):179–183. doi:10.3176/proc.2011.3.06 CrossRefGoogle Scholar
  46. 46.
    Muschik W, Papenfuss C, Ehrentraut H (1996) Concepts of continuum thermodynamics. Kielce University of Technology, Technische Universität Berlin, BerlinGoogle Scholar
  47. 47.
    Ehrentraut H, Muschik W (1998) ARI - Int J Phys Eng Sci 51:149–159. doi:10.1007/s007770050048.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Civil and Structural EngineeringAalto University School of EngineeringOtaniemi, EspooFinland
  2. 2.Centre for BioroboticsTallinn University of TechnologyTallinnEstonia
  3. 3.Centre for Nonlinear StudiesInstitute of Cybernetics at Tallinn University of TechnologyTallinnEstonia

Personalised recommendations