Journal of Materials Science

, Volume 48, Issue 13, pp 4613–4619 | Cite as

Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion

  • G. F. Zhang
  • X. Sauvage
  • J. T. WangEmail author
  • N. Gao
  • T. G. Langdon
Nanostructured Materials


A Cu-11.8 wt% Al alloy was quenched in iced water from a high temperature (850 °C) to introduce a martensitic phase and then the alloy was processed using quasi-constrained high-pressure torsion (HPT). The micro-hardness and the microstructures of the unprocessed and severely deformed materials were investigated using a wide range of experimental techniques (X-ray diffraction, optical microscopy, scanning electron microscopy, transmission electron microscopy, and high- resolution TEM). During HPT, a stress-induced martensite–martensite transformation occurs and an \( \alpha^{\prime}_{1} \) martensite phase is formed. In the deformed material, there are nanoscale deformation bands having high densities of defects and twins in the \( \alpha^{\prime}_{1} \) martensite. It was observed that a high density of dislocations became pinned and accumulated in the vicinity of twin boundaries, thereby demonstrating a strong interaction between twin boundaries and dislocations during the HPT process.


Martensite HRTEM Severe Plastic Deformation Twin Boundary Deformation Twin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the Ministry of Science and Technology of China under Grant No. 2012CB932203 of the National Key Basic Research Program and by the Royal Society of the UK under International Joint Project No. JP871294. GFZ is grateful to the Xu Guangqi program 2009 and the 3rd scholarship program of NUST for providing an opportunity to study in the University of Rouen, Groupe de Physique des Matériaux, CNRS (UMR 6634), supervised by Dr. Xavier Sauvage for 6 months. Thanks are due to Chuanting Wang for HPT processing of the samples.


  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  2. 2.
    Meyers MA, Mishra A, Benson DJ (2006) Prog Mater Sci 51:427CrossRefGoogle Scholar
  3. 3.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  4. 4.
    Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893CrossRefGoogle Scholar
  5. 5.
    Li YS, Tao NR, Lu K (2008) Acta Mater 56:230CrossRefGoogle Scholar
  6. 6.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1997) Acta Mater 45:478CrossRefGoogle Scholar
  7. 7.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317CrossRefGoogle Scholar
  8. 8.
    Hughes DA, Hansen N (2000) Acta Mater 48:2985CrossRefGoogle Scholar
  9. 9.
    Dalla Torre F, Lapovok R, Sandlin J, Thomson PF, Davies CHJ, Pereloma EV (2004) Acta Mater 52:4819CrossRefGoogle Scholar
  10. 10.
    Hebesberger T, Stuwe HP, Vorhauer A, Wetscher F, Pippan R (2005) Acta Mater 53:393CrossRefGoogle Scholar
  11. 11.
    Mishra A, Kad BK, Gregori F, Meyers MA (2007) Acta Mater 55:13CrossRefGoogle Scholar
  12. 12.
    Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203CrossRefGoogle Scholar
  13. 13.
    Langdon TG (2007) Mater Sci Eng A462:3Google Scholar
  14. 14.
    Zhang Y, Tao NR, Lu K (2008) Acta Mater 56:2429CrossRefGoogle Scholar
  15. 15.
    Edalati K, Fujioka T, Horita Z (2008) Mater Sci Eng A 497:168CrossRefGoogle Scholar
  16. 16.
    Kawasaki M, Horita Z, Langdon TG (2009) Mater Sci Eng A524:143Google Scholar
  17. 17.
    Tao NR, Lu K (2009) Scripta Mater 60:1039CrossRefGoogle Scholar
  18. 18.
    Lu K, Hansen N (2009) Scripta Mater 60:1033CrossRefGoogle Scholar
  19. 19.
    Qu S, An XH, Yang HJ, Huang CX, Yang G, Zang QS, Wang ZG, Wu SD, Zhang ZF (2009) Acta Mater 57:1586CrossRefGoogle Scholar
  20. 20.
    Balogh L, Figueiredo RB, Ungár T, Langdon TG (2010) Mater Sci Eng A528:533Google Scholar
  21. 21.
    Ni S, Wang YB, Liao XZ, Li HQ, Figueiredo RB, Ringer SP, Langdon TG, Zhu YT (2011) Phys Rev B 84:235401CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Tao NR, Lu K (2011) Acta Mater 59:6048CrossRefGoogle Scholar
  23. 23.
    An XH, Lin QY, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2011) Scripta Mater 64:954CrossRefGoogle Scholar
  24. 24.
    Ni S, Wang YB, Liao XZ, Alhajeri SN, Li HQ, Ringer SP, Langdon TG, Zhu YT (2011) Mater Sci Forum 667–669:181Google Scholar
  25. 25.
    Zhu YT, Liao XZ, Wu XL (2012) Prog Mater Sci 57:1CrossRefGoogle Scholar
  26. 26.
    Ni S, Wang YB, Liao XZ, Figueiredo RB, Li HQ, Ringer SP, Langdon TG, Zhu YT (2012) Acta Mater 60:3181CrossRefGoogle Scholar
  27. 27.
    Hodge AM, Furnish TA, Shite CJ, Liao Y, Huang X, Hong CS, Zhu YT, Barbee TW, Weertman JR (2012) Scripta Mater 66:872CrossRefGoogle Scholar
  28. 28.
    Li YS, Zhang Y, Tao NR, Lu K (2009) Acta Mater 57:761CrossRefGoogle Scholar
  29. 29.
    Balogh L, Ungár T, Zhao Y, Zhu YT, Horita Z, Xu C, Langdon TG (2008) Acta Mater 56:809CrossRefGoogle Scholar
  30. 30.
    Wu X, Tao NR, Hong K, Liu G, Xu B, Lu J, Lu K (2005) Acta Mater 53:681CrossRefGoogle Scholar
  31. 31.
    Zhao WS, Tao NR, Guo JY, Lu QH, Lu K (2005) Scripta Mater 53:745CrossRefGoogle Scholar
  32. 32.
    Duggan BJ, Hatherly M, Hutchinson WB, Wakefield PT (1978) Metal Sci 12:343CrossRefGoogle Scholar
  33. 33.
    Hatherly M, Malin AS (1979) Metal Technol 6:308Google Scholar
  34. 34.
    Wakefield PT, Hatherly M (1981) Met Sci 15:109CrossRefGoogle Scholar
  35. 35.
    Donadille C, Valle R, Dervin P, Penelle R (1989) Acta Metall 37:1547CrossRefGoogle Scholar
  36. 36.
    Abd El Aal MI (2011) Mater Sci Eng A528:6946Google Scholar
  37. 37.
    Greninger AB (1939) Trans AIME 133:204Google Scholar
  38. 38.
    Kurdjumov GV, Miretskit V, Stelletzkaya T (1959) J Tech Phys USSR 938:8Google Scholar
  39. 39.
    Nakanishi N (1961) Trans Jpn Inst Metals 2:85Google Scholar
  40. 40.
    Swann PR, Warlimont H (1963) Acta Metall 11:511CrossRefGoogle Scholar
  41. 41.
    Tas H, Delaey L, Deruyttere A (1971) Scripta Metall 5:1117CrossRefGoogle Scholar
  42. 42.
    Tas H, Delaey L, Deruyttere (1973) Z Metallkd 64:855Google Scholar
  43. 43.
    Otsuka K, Sakamoto H, Shimizu K (1979) Acta Metall 27:585CrossRefGoogle Scholar
  44. 44.
    Gyobu A, Enami K, Nagasawa A, Nenno S (1982) J Phys Colloq 43:641CrossRefGoogle Scholar
  45. 45.
    Sittner P, Lukás P, Neov D, Daymond MR, Novák V, Swallowe GM (2002) Mater Sci Eng A 324:225CrossRefGoogle Scholar
  46. 46.
    Kozlova LE, Titenko AN (2006) Mater Sci Eng A 438–440:738Google Scholar
  47. 47.
    Dia V, Stanciu S, Bujoreanu LG, Munteanu C (2008) Mater Sci Eng A 481–482:494Google Scholar
  48. 48.
    Huang HY, Liu JP, Wang Y, Liu XF, Xie JX (2012) Mater Lett 79:51CrossRefGoogle Scholar
  49. 49.
    Rohatgi A, Vecchio KS, Gray GT (2001) Metall Mater Trans A 32A:135CrossRefGoogle Scholar
  50. 50.
    Kawasaki M, Langdon TG (2008) Mater Sci Eng A 498:341CrossRefGoogle Scholar
  51. 51.
    Tian YZ, An XH, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2010) Scripta Mater 63:65CrossRefGoogle Scholar
  52. 52.
    Figueiredo RB, Cetlin PR, Langdon TG (2011) Mater Sci Eng A528:8198Google Scholar
  53. 53.
    Brooks CR (1982) Heat treatment, microstructure and properties of nonferrous alloys. ASM International, Metals ParkGoogle Scholar
  54. 54.
    Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) J Mech Phys Solids 56:1186CrossRefGoogle Scholar
  55. 55.
    Hurtado MRF, Portillo J, Maniette Y, Adorno AT, Benedetti AV (1998) J Alloys Compd 280:188CrossRefGoogle Scholar
  56. 56.
    Liu D, Hashimoto H (1997) J Mater Sci 32:1657. doi: 10.1023/A:1018507512870 CrossRefGoogle Scholar
  57. 57.
    Wu XL, Zhu YT, Wei YG, Wei Q (2009) Phys Rev Lett 103:205504CrossRefGoogle Scholar
  58. 58.
    Liao XZ, Huang JY, Zhu YT (2003) Philos Mag 83(26):3065CrossRefGoogle Scholar
  59. 59.
    Zhang LC, Chen GL, Ye HQ (2001) Mater Sci Eng A 299:267CrossRefGoogle Scholar
  60. 60.
    Bracke L, Kestens L, Penning J (2007) Scripta Mater 57:385CrossRefGoogle Scholar
  61. 61.
    Bracke L, Verbeken K, Kestens L, Penning J (2009) Acta Mater 57:1512CrossRefGoogle Scholar
  62. 62.
    Astafurova EG, Tukeeva MS, Zakharova GG, Melnikov EV, Maier HJ (2011) Mater Character 62:588CrossRefGoogle Scholar
  63. 63.
    Bagherpour E, Reihanian M, Ebrahimi R (2012) Mater Des 36:391CrossRefGoogle Scholar
  64. 64.
    Matoso MS, Figueiredo RB, Kawasaki M, Santos DB, Langdon TG (2012) Scripta Mater 67:649CrossRefGoogle Scholar
  65. 65.
    Ivanisenko Y, Maclaren I, Sauvage X, Valiev RZ, Fecht HJ (2006) Acta Mater 54:1659CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • G. F. Zhang
    • 1
  • X. Sauvage
    • 2
  • J. T. Wang
    • 1
    Email author
  • N. Gao
    • 3
  • T. G. Langdon
    • 3
    • 4
  1. 1.School of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  2. 2.Groupe de Physique des Matériaux, CNRS (UMR 6634)University of RouenSaint-EtienneFrance
  3. 3.Materials Research Group, Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK
  4. 4.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations