Journal of Materials Science

, Volume 48, Issue 9, pp 3535–3545 | Cite as

Combined X-ray and neutron diffraction Rietveld refinement in iron-substituted nano-hydroxyapatite

  • A. Kyriacou
  • Th. Leventouri
  • B. C. Chakoumakos
  • V. O. Garlea
  • C. B. dela Cruz
  • A. J. Rondinone
  • K. D. Sorge
Article

Abstract

Simultaneous Rietveld refinements of X-ray and neutron powder diffraction patterns were applied to study the effect of Fe substitution on the crystal structure properties of the Ca5−xFex(PO4)3OH system (0 ≤ x ≤ 0.3). From variations of the Ca(1) and Ca(2) site occupancies and modifications of interatomic distances with x, it is inferred that Fe substitutes at both crystallographic sites with a preference at the Ca(2) site. Such partiality is attributed to similar geometries of the sixfold coordinated Fe with the sevenfold coordinated Ca(2). The expected overall decrease of the lattice constants in the iron-substituted samples is followed by an increasing trend with x that is explained in terms of local lattice distortions. Hematite forms as a secondary phase starting at x = 0.1 up to 3.7 wt% for x = 0.3. Transmission electron microscopy reveals a nanosystem consisting of 15–65 nm rods and spheres, while hematite nanoparticles are distinguishable for x ≥ 0.1. A transition of the diamagnetic hydroxyapatite to paramagnetic Fe-hydroxyapatite was found from magnetic measurements, while the antiferromagnetic hematite develops hysteresis loops for x > 0.1.

References

  1. 1.
    LeGeros RZ, LeGeros JP (1984) In: Nriagu JO, Moore PB (eds) Phosphate minerals. Springer-Verlag, Berlin/Heidelberg, p. 351Google Scholar
  2. 2.
    Driessens FCM, Veerbeeck RMH (1990) Biominerals. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Skinner HCW (2000) EMU Notes Mineral 2:383Google Scholar
  4. 4.
    LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Krager, BaselGoogle Scholar
  5. 5.
    Priest ND, Viver VD (1990) Trace metals and fluoride in bones and teeth. CRC Press, Boca RatonGoogle Scholar
  6. 6.
    Wopenka B, Pasteris JD (2005) Mater Sci Eng C 25:131CrossRefGoogle Scholar
  7. 7.
    Leventouri Th (2007) In: Kendall JA (ed) Biomaterials Research Advances. Nova Science Publishers, New York, p 145Google Scholar
  8. 8.
    Medeiros DM, Plattner A, Jennings D, Stoecker B (2002) J Nutr 132:3135Google Scholar
  9. 9.
    De Vernejoul MC, Pointillart A, Cywiner Golenzer C, Morieux C, Bielakoff J, Modrowski D, Miravet L (1984) Am J Pathol 116:377Google Scholar
  10. 10.
    Guggenbuhl P, Filmon R, Mabileau G, Basle MF, Chappard D (2008) Metab Clin Exp 57:903CrossRefGoogle Scholar
  11. 11.
    Okazaki M, Takajashi J (1997) Biomaterials 18:11CrossRefGoogle Scholar
  12. 12.
    Wu HC, Wang TW, Sun JS, Wang WH, Lin FH (2007) Nanotechnology 18:165601CrossRefGoogle Scholar
  13. 13.
    Low HR, Phothammachai N, Maignan A, Stewart GA, Bastow TJ, Ma LL, White TJ (2008) Inorg Chem 47:11774CrossRefGoogle Scholar
  14. 14.
    Khudolozhkin BO, Urusov VS, Kurash VV (1974) Geochem Int 11:748Google Scholar
  15. 15.
    Morissay R, Rodriguez-Lorenzo LM, Gross KA (2005) J Mater Sci Mater Med 16:387CrossRefGoogle Scholar
  16. 16.
    Jiang M, Terra J, Rossi AM, Morales MA, Baggio Saitovich EM, Ellis DE (2002) Phys Rev B 66:224107CrossRefGoogle Scholar
  17. 17.
    Li Y, Widodo J, Lim S, Ooi CP (2012) J Mater Sci 47:754. doi:10.1007/s10853-011-5851-7 CrossRefGoogle Scholar
  18. 18.
    Salviulo G, Bettinelli M, Russo U, Speghini A, Nodari L (2011) J Mater Sci 46:910. doi:10.1007/s10853-010-4834-4 CrossRefGoogle Scholar
  19. 19.
    Larson AC, Von Dreele RB (2004) General structure analysis system Los Alamos National Laboratory Report LAUR 86-748Google Scholar
  20. 20.
    Garlea VO, Chakoumakos BC, Moore SA, Taylor GB, Chae T, Maples RG, Riedel RA, Lynn GW, Selby DL (2010) Appl Phys A 99:531CrossRefGoogle Scholar
  21. 21.
    Rietveld HM (1969) J Appl Crystallogr 2:65CrossRefGoogle Scholar
  22. 22.
    Saenger AT, Kuhs WF (1992) Zeit Kristallogr 199:123CrossRefGoogle Scholar
  23. 23.
    Thompson P, Cox DE, Hastings JB (1987) J Appl Crystallogr 20:79CrossRefGoogle Scholar
  24. 24.
    Finger LW, Cox DE, Jephcoat AP (1994) J Appl Crystallogr 27:892CrossRefGoogle Scholar
  25. 25.
    Blake RL, Hessevick RE (1966) Am Miner 51:123Google Scholar
  26. 26.
    Hill AH, Jiao F, Bruce PG, Harrison A, Kocklemann W, Ritter C (2008) Chem Mater 20:4891CrossRefGoogle Scholar
  27. 27.
    Cui J, Huang Q, Toby BH (2006) Powder Diffr 21:1CrossRefGoogle Scholar
  28. 28.
    Baron V, Gutzmer J, Rundlof H, Tellgren R (2005) Solid State Sci 7:753CrossRefGoogle Scholar
  29. 29.
    Shull CG, Strausser WA, Wollan EO (1951) Phys Rev 83:333CrossRefGoogle Scholar
  30. 30.
    Kyriacou A (2012) Dissertation http://gradworks.umi.com/3520018.pdf. Accessed 15 Jan 2013.
  31. 31.
    Hughes JM, Fransolet AM, Schreyer W (1993) Neues Jahrb Miner 11:504Google Scholar
  32. 32.
    Low HR, Ritter C, White TJ (2010) Dalton Trans 39:6488CrossRefGoogle Scholar
  33. 33.
    Jiang H, Li Y, Zuo Y, Yang W, Zhang L, Li J, Wang L, Zou Q, Cheng L, Li J (2009) J Nanosci Nanotechnol 9:6844Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. Kyriacou
    • 1
  • Th. Leventouri
    • 1
  • B. C. Chakoumakos
    • 2
  • V. O. Garlea
    • 2
  • C. B. dela Cruz
    • 2
  • A. J. Rondinone
    • 3
  • K. D. Sorge
    • 1
  1. 1.Department of PhysicsFlorida Atlantic UniversityBoca RatonUSA
  2. 2.Quantum Condensed Matter DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Center for Nanophase Materials ScienceOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations