Journal of Materials Science

, Volume 48, Issue 9, pp 3469–3478 | Cite as

Viscoelasticity and compaction behaviour of the foam-like pomelo (Citrus maxima) peel

Article

Abstract

The pomelo (Citrus maxima) is the largest and heaviest fruit of the genus Citrus and can acquire considerable potential energy as it ripens hanging up to 15 m height. Its thick foam-like structured peel presumably acts inter alia as a shock absorbing layer, protecting the fruit as it impacts on the ground upon being shed. Thereby the peel dissipates kinetic energy by being compacted. In order to elucidate the compaction mechanism of the highly heterogeneous pomelo peel, we conducted incremental stress relaxation tests. Two different models describing the stress relaxation curves, namely, the well-known Maxwell model and the Peleg model were compared and found to be suitable to describe the stress relaxation. As the Peleg model involves only two constants describing the relaxation curves it was the method of choice for interpreting the compaction of the peel samples. The inverse of k1 reflects the initial decay rate of the relaxation process and k2 is a measure of the samples’ solidity. The behaviour of these constants with increasing strain indicates the strong influence of the peel samples’ geometry and composition which is attributed to the fruit shape, a gradual changing density of the peel, which can be considered as a stacked array of foam layers differing in density, and the turgescence of the biological cells.

Notes

Acknowledgements

We want to thank the German Research Foundation (DFG) for funding this project within the priority program 1420 ‘Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials’.

References

  1. 1.
    Scora RW, Nicolson DH (1986) Taxon 35:592CrossRefGoogle Scholar
  2. 2.
    Moore GA (2001) Trends Genet 17:536CrossRefGoogle Scholar
  3. 3.
    Gross J, Timberg R, Graef M (1983) Bot Gaz 144:401CrossRefGoogle Scholar
  4. 4.
    Scott FM, Baker KC (1947) Bot Gaz 108:459CrossRefGoogle Scholar
  5. 5.
    Hejnowicz Z, Barthlott W (2005) Am J Bot 92:391CrossRefGoogle Scholar
  6. 6.
    Ford ES (1942) Bot Gaz 104:288CrossRefGoogle Scholar
  7. 7.
    Roth I (1977) In: Linsbauer K (ed) Handbuch der pflanzenanatomie spezieller teil, band X, teil 1—anatomy and morphology. Borntraeger, BerlinGoogle Scholar
  8. 8.
    Underhill SJR, McLauchlan RL, Dahler JM (1998) J Texture Stud 29:437CrossRefGoogle Scholar
  9. 9.
    Fischer SF, Thielen M, Loprang RR, Seidel R, Fleck C, Speck T, Bührig-Polaczek A (2010) Adv Eng Mater 12:B658CrossRefGoogle Scholar
  10. 10.
    Barrett HC, Rhodes AM (1976) Syst Bot 1:105CrossRefGoogle Scholar
  11. 11.
    Morton JF (1987) Fruits of warm climates. Creative Resource Systems, Inc., WintervilleGoogle Scholar
  12. 12.
    Seidel R, Bührig-Polaczek A, Fleck C, Speck T (2009) Impact resistance of hierarchically structured fruit walls and nut shells in view of biomimetic applications. In: Thibaut B (ed) Proceedings of the 6th plant biomechanics conference. ECOFOG, CayenneGoogle Scholar
  13. 13.
    Gyasi S, Fridley RB, Chen P (1981) Trans ASABE 24:0747Google Scholar
  14. 14.
    Chuma Y, Shiga T, Iwamoto M (1978) J Texture Stud 9:461CrossRefGoogle Scholar
  15. 15.
    Sarig Y, Orlovsky S (1974) J Texture Stud 5:339CrossRefGoogle Scholar
  16. 16.
    Singh KK, Reddy BS (2005) J Food Eng 73:112CrossRefGoogle Scholar
  17. 17.
    Dal Fabbro IM, Linares AW, Abraão RF (2001) Acta Hort 2001(562):319Google Scholar
  18. 18.
    Fluck RC, Ahmed EM (1974) J Texture Stud 4:494CrossRefGoogle Scholar
  19. 19.
    Sarig Y (1991) Int J Impact Eng 11:251CrossRefGoogle Scholar
  20. 20.
    Pollak N, Peleg M (1980) J Food Sci 45:825CrossRefGoogle Scholar
  21. 21.
    Miltz J, Ramon O (1986) Polym Eng Sci 26:1305CrossRefGoogle Scholar
  22. 22.
    Peleg M, Pollak N (1982) J Texture Stud 13:1CrossRefGoogle Scholar
  23. 23.
    Niklas KJ (1992) Plant biomechanics—an engineering approach to plant form and function. University of Chicago Press, ChicagoGoogle Scholar
  24. 24.
    Peleg M (1979) J Food Sci 44:277CrossRefGoogle Scholar
  25. 25.
    Peleg M (1980) J Rheol 24:451CrossRefGoogle Scholar
  26. 26.
    Purkayastha S, Peleg M (1986) J Texture Stud 17:433CrossRefGoogle Scholar
  27. 27.
    R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  28. 28.
    Martone PT, Boller M, Burgert I, Dumais J, Edwards J, Mach K, Rowe N, Rueggeberg M, Seidel R, Speck T (2010) Integr Comp Biol 50:888CrossRefGoogle Scholar
  29. 29.
    Corradini MG, Peleg M (2008) In: Aguilera JM, Lillford PJ (eds) Food materials science—principles and practice. Springer, New YorkGoogle Scholar
  30. 30.
    Ben-Zion O, Nussinovitch A (1997) Food Hydrocolloid 11:253CrossRefGoogle Scholar
  31. 31.
    Moghimi A, Saiedirad MH, Moghadam EG (2011) Int J Food Sci Technol 46:855CrossRefGoogle Scholar
  32. 32.
    Peleg M, Normand MD (1983) Rheol Acta 22:108CrossRefGoogle Scholar
  33. 33.
    Lee YC, Rosenau JR, Peleg M (1983) J Texture Stud 14:143CrossRefGoogle Scholar
  34. 34.
    Peleg M (1997) Food Sci Technol Int 3:227CrossRefGoogle Scholar
  35. 35.
    Niklas KJ (1989) Am J Bot 76:929CrossRefGoogle Scholar
  36. 36.
    Gibson LJ, Ashby MF, Harley BA (2010) Cellular materials in nature and medicine. University Press, CambridgeGoogle Scholar
  37. 37.
    Nilsson SB, Hertz CH, Falk S (1958) Physiol Plantarum 11:818CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Plant Biomechanics Group Freiburg, Botanic Garden, Faculty of BiologyUniversity of FreiburgFreiburgGermany

Personalised recommendations