Journal of Materials Science

, Volume 48, Issue 9, pp 3386–3394 | Cite as

Copper and iron based thin film nanocomposites prepared by radio frequency sputtering. Part I: elaboration and characterization of metal/oxide thin film nanocomposites using controlled in situ reduction process

  • A. Barnabé
  • A. Chapelle
  • L. Presmanes
  • P. Tailhades


Copper and iron based thin films were prepared on glass substrate by radio-frequency sputtering technique from a delafossite CuFeO2 target. After deposition, the structure and microstructure of the films were examined using grazing incidence X-ray diffraction, Raman spectroscopy, electron probe micro-analysis and transmission electron microscopy coupled with EDS mapping. Target to substrate distance and sputtering gas pressure were varied to obtain films having different amount and distribution of copper nanoparticles and different composition of oxide matrix. The overall reaction process, which starts from CuFeO2 target and ends with the formation of films having different proportion of copper, copper oxide and iron oxide, was described by a combination of balanced chemical reactions. A direct relationship between the composition of the metal/oxide nanocomposite thin film and the sputtering parameters was established. This empirical relationship can further be used to control the composition of the metal/oxide nanocomposite thin films, i.e. the in situ reduction of copper ions in the target.


  1. 1.
    Sekino T, Niihara K (1997) J Mater Sci 32:3943. doi:10.1023/A:1018668900343 CrossRefGoogle Scholar
  2. 2.
    Gugilla S, Manthiram A (1996) Mater Sci Eng B 40:191CrossRefGoogle Scholar
  3. 3.
    Chakravorty D (1992) Bull Mater Sci 15:411CrossRefGoogle Scholar
  4. 4.
    Moya JS, Lopez-Esteban S, Pecharroman C (2007) Prog Mater Sci 52:1017CrossRefGoogle Scholar
  5. 5.
    Kondo H, Sekino T, Tanaka N, Nakayama T, Kusunose T, Niihara K (2005) J Am Ceram Soc 88:1468CrossRefGoogle Scholar
  6. 6.
    Yashima M, Falk LKL, Palmqvist AEC, Holmberg K (2003) J Colloid Interf Sci 268:348CrossRefGoogle Scholar
  7. 7.
    Seino S, Kinoshita T, Otome Y, Maki T, Nakagawa T, Okitsu K, Mizukoshi Y, Nakayama T, Sekino T, Niihara K, Yamamoto TA (2004) Scripta Mater 51:467CrossRefGoogle Scholar
  8. 8.
    Moreau F, Bond GC, Taylor AO (2005) J Catal 231:105CrossRefGoogle Scholar
  9. 9.
    Basu S, Basu PK (2009) J Sens ID 861968:1Google Scholar
  10. 10.
    Korotcenkov G, Cho BK, Gulina L, Tolstoy V (2009) Sens Actuators B 141:610CrossRefGoogle Scholar
  11. 11.
    Singh N, Gupta RK, Lee PS (2011) Appl Mater Interfaces 3:2246CrossRefGoogle Scholar
  12. 12.
    Hwang HJ, Toriyama M, Sekino T, Niihara K (1998) J Eur Ceram Soc 18:2193CrossRefGoogle Scholar
  13. 13.
    Yoona S, Dornseiffer J, Xiong Y, Grünerc D, Shen Z, Iwaya S, Pithan C, Waser R (2011) J Eur Ceram Soc 31:773CrossRefGoogle Scholar
  14. 14.
    Sasaki T, Koshizaki N, Koinuma M, Matsumoto Y (1999) Nanostruct Mater 12:511CrossRefGoogle Scholar
  15. 15.
    Randeniyaa LK, Bendavid A, Martin PJ, Amin MS, Rohanizadeh R, Tang F, Cairney JM (2010) Diamond Relat Mater 19:329CrossRefGoogle Scholar
  16. 16.
    Wang H, Xue SX, Yang FJ, Wang HB, Cao X, Wang JA, Gao Y, Huang ZB, Yang CP, Cheung WY, Wong SP, Li Q, Li ZY (2006) Thin Solid Films 505:77CrossRefGoogle Scholar
  17. 17.
    Tseng CC, Hsieh JH, Wu W (2011) Thin Solid Films 519:5169CrossRefGoogle Scholar
  18. 18.
    Vasquez-Cuchillo O, Pal U, Vasquez-Lopez C (2001) Sol Energy Mater Sol Cells 70:369CrossRefGoogle Scholar
  19. 19.
    Winkler T, Schmidt H, Flügge H, Nikolayzik F, Baumann I, Schmale S, Weimann T, Hinze P, Johannes HH, Rabe T, Hamwi S, Riedl T, Kowalsky W (2011) Org Electron 12:1612CrossRefGoogle Scholar
  20. 20.
    Yu J, Xiong J, Cheng B, Liu S (2005) Appl Catal B 60:211CrossRefGoogle Scholar
  21. 21.
    Hsieh JH, Shang CC, Chang YK, Cherng JS (2010) Thin Solid Films 518:7263CrossRefGoogle Scholar
  22. 22.
    Ando M, Kobayashi T, Haruta M (1994) J Chem Soc 90:1011Google Scholar
  23. 23.
    Ando M, Chabicovsky R, Haruta M (2001) Sens Actuators B 76:13CrossRefGoogle Scholar
  24. 24.
    Mauvernay B, Presmanes L, Capdeville S, De Resende VG, De Grave E, Bonningue C, Tailhades P (2007) Thin Solid Films 515:6532CrossRefGoogle Scholar
  25. 25.
    Mugnier E, Barnabé A, Presmanes L, Tailhades P (2008) Thin Solid Films 516:1453CrossRefGoogle Scholar
  26. 26.
    Mugnier E, Barnabé A, Tailhades P (2006) Solid State Ion 177:607CrossRefGoogle Scholar
  27. 27.
    Lalanne M, Barnabé A, Mathieu F, Tailhades P (2009) Inorg Chem 48:6065CrossRefGoogle Scholar
  28. 28.
    Gong YS, Lee C, Yang CK (1995) J Appl Phys 77:5422CrossRefGoogle Scholar
  29. 29.
    Fu Q, Jin P, Ling X, Zhang S, Sun W, Xia Y (2012) Int J Corr 2012:1CrossRefGoogle Scholar
  30. 30.
    Zheng YT, Xuan FZ, Wang Z (2012) Mater Lett 78:11CrossRefGoogle Scholar
  31. 31.
    Colomban P, Tournié A, Maucuer M, Meynard P (2012) J Raman Spectrosc 43:799CrossRefGoogle Scholar
  32. 32.
    Varshney D, Yogi A (2010) Mater Chem Phys 123:434CrossRefGoogle Scholar
  33. 33.
    Katkov AE, Lykasov AA (2003) Inorg Mater 39:171CrossRefGoogle Scholar
  34. 34.
    Ziegler JF (2008) SRIM software—the stopping and range of ions in matter. Accessed 2008
  35. 35.
    Ziegler JF, Biersack J, Littmark U (1985) Pergamon Press The Stopping and Range of Ions in MatterGoogle Scholar
  36. 36.
    Ben Amor S, Rogier B, Baud G, Jacquet M, Nardin M (1998) Mater Sci Eng B 57:28–39Google Scholar
  37. 37.
    Barnabé A, Mugnier E, Presmanes L, Tailhades P (2006) Mater Lett 60:3468CrossRefGoogle Scholar
  38. 38.
    Tailhades P, Gillot B, Rousset A (1997) J Phys IV C1:249Google Scholar
  39. 39.
    Mugnier E, Pasquet I, Barnabé A, Presmanes L, Bonningue C, Tailhades P (2005) Thin Solid Film 493:49CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. Barnabé
    • 1
  • A. Chapelle
    • 1
  • L. Presmanes
    • 1
  • P. Tailhades
    • 1
  1. 1.Institut Carnot CIRIMAT—UMR CNRS 5085Université Paul Sabatier Toulouse IIIToulouse Cedex 4France

Personalised recommendations