Journal of Materials Science

, Volume 48, Issue 7, pp 3013–3026 | Cite as

Copper crystals on the (11\(\bf{\bar{2}}\)0) sapphire plane: orientation relationships, triple line ridges and interface shape equilibrium

  • Stefano Curiotto
  • Harry Chien
  • Hila Meltzman
  • Stephane Labat
  • Paul Wynblatt
  • Gregory S. Rohrer
  • Wayne D. Kaplan
  • Dominique Chatain


The orientation relationships (ORs) of copper crystals on a \( (11\bar{2}0) \) sapphire substrate equilibrated at 1253 K are presented. They barely depend on the procedures used in sample preparation, i.e. dewetting of a copper film in the liquid state or in the solid state. The most frequent OR found is Cu(111) || Al2O3\( (11\bar{2}0) \) and Cu\( [1\bar{1}0] \) within few degrees from Al2O3[0001]. A secondary, lower frequency OR is also observed: Cu(001) || Al2O3\( (11\bar{2}0) \) with Cu\( [1\bar{1}0] \) within a few degrees from either Al2O3\( [1\bar{1}00] \) or Al2O3[0001]. These ORs do not follow the Fecht and Gleiter model which proposes that dense directions of the metal should align with dense directions of the oxide. On annealing, even at a temperature about half of the melting point of sapphire, fast diffusion of sapphire at the copper/sapphire interface is observed: the copper particles tend to achieve their interfacial equilibrium shapes by sinking into the substrate, and sapphire ridges form at the triple line. Finally, it is shown that the Cu(111) || Al2O3\( (11\bar{2}0) \) interface remains flat at the atomic scale, and is therefore part of the copper/sapphire equilibrium interfacial shape.


  1. 1.
    Curiotto S, Chien H, Meltzmann H, Wynblatt P, Roher GS, Kaplan WD, Chatain D (2011) Acta Mater 59:5320CrossRefGoogle Scholar
  2. 2.
    Chatain D, Ghetta V, Wynblatt P (2004) Interface Sci 12:7CrossRefGoogle Scholar
  3. 3.
    Fecht H, Gleiter H (1985) Acta Metall 33(4):557CrossRefGoogle Scholar
  4. 4.
    Sasaki T, Matsunaga K, Ohta H, Hosono H, Yamamoto T, Ikuhara Y (2003) Sci Technol Adv Mater 4:575CrossRefGoogle Scholar
  5. 5.
    Herrmann G, Gleiter H (1976) Acta Metall Mater 24(4):353CrossRefGoogle Scholar
  6. 6.
    Oh SH, Scheu C, Wagner T, Ruhle M (2007) Appl Phys Lett 91:141912CrossRefGoogle Scholar
  7. 7.
    Scheu C, Stein W, Ruhle M (2000) Phys Status Solid B 222:199CrossRefGoogle Scholar
  8. 8.
    Vargas R, Goto T, Zhang W, Hirai T (1994) Appl Phys Lett 65:1094CrossRefGoogle Scholar
  9. 9.
    Dai Z, Bednarski-Meinke C, Loloee R, Golding B (2003) Appl Phys Lett 82:3847CrossRefGoogle Scholar
  10. 10.
    Liu Y, German RM (1996) Acta Mater 44:1657CrossRefGoogle Scholar
  11. 11.
    Saiz E, Tomsia AP, Cannon RM (1998) Acta Mater 46:2349Google Scholar
  12. 12.
    Ghetta V, Chatain D (2002) J Am Ceram Soc 85(4):961CrossRefGoogle Scholar
  13. 13.
    Siem EJ, Carter WC, Chatain D (2004) Philos Mag 84(10):991CrossRefGoogle Scholar
  14. 14.
    Zucker RV, Chatain D, Dahmen U, Hagège S, Carter WC (2012) J Mater Sci 47:8290CrossRefGoogle Scholar
  15. 15.
    Curiotto S, Chatain D (2009) Surf Sci 603:2688CrossRefGoogle Scholar
  16. 16.
    Chatain D, Chabert F, Ghetta V, Fouletier J (1993) J Am Ceram Soc 76:1568CrossRefGoogle Scholar
  17. 17.
    Choi J-H, Kim D-Y, Hockey BJ, Wiederhorn SM, Handwerker CA, Blendell JE, Carter WC, Roosen AR (1997) J Am Ceram Soc 80:62CrossRefGoogle Scholar
  18. 18.
    Kitayama M, Glaeser AM (2002) J Am Ceram Soc 85:611CrossRefGoogle Scholar
  19. 19.
    Santala MK, Radmilovic V, Giulian R, Ridgway MC, Gronsky R, Glaeser AM (2011) Acta Mater 59(12):4761CrossRefGoogle Scholar
  20. 20.
    Sadan H, Kaplan WD (2006) J Mater Sci 41:5371CrossRefGoogle Scholar
  21. 21.
    Sadan H, Kaplan WD (2006) J Mater Sci 41:5099CrossRefGoogle Scholar
  22. 22.
    Baram M, Kaplan WD (2008) J Microsc 232:395CrossRefGoogle Scholar
  23. 23.
    Bennet S (1978) J Phys D Appl Phys 11:777CrossRefGoogle Scholar
  24. 24.
    Aldebert P, Traverse JP (1982) J Am Ceram Soc 65:460CrossRefGoogle Scholar
  25. 25.
    Chatain D, Carter WC (2004) Nat Mater 13(12):843CrossRefGoogle Scholar
  26. 26.
    Meltzman H, Mordehai D, Kaplan WD (2012) Acta Mater 60(11):4359CrossRefGoogle Scholar
  27. 27.
    Kumikov VM, Khokonov KB (1983) J Appl Phys 54:1346CrossRefGoogle Scholar
  28. 28.
    Levi G, Kaplan WD (2003) Acta Mater 51:2793CrossRefGoogle Scholar
  29. 29.
    Trumble KP (1992) Acta Metall Mater 40:s105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Stefano Curiotto
    • 1
  • Harry Chien
    • 2
  • Hila Meltzman
    • 3
  • Stephane Labat
    • 4
  • Paul Wynblatt
    • 2
  • Gregory S. Rohrer
    • 2
  • Wayne D. Kaplan
    • 3
  • Dominique Chatain
    • 1
  1. 1.Aix Marseille Université, CNRS, CINaM UMR 7325MarseilleFrance
  2. 2.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of Materials Science and EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael
  4. 4.Aix Marseille Université, CNRS, IM2NP UMR 6242MarseilleFrance

Personalised recommendations