Journal of Materials Science

, Volume 48, Issue 7, pp 2977–2985 | Cite as

Fabrication of ‘finger-geometry’ silicon solar cells by electrochemical anodisation

  • G. F. Martins
  • A. J. R. Thompson
  • B. Goller
  • D. Kovalev
  • J. D. Murphy


Cells made from crystalline silicon dominate the market for photovoltaics, but improvements in cost-effectiveness are still necessary for uptake to increase. In this paper, we investigate the fabrication of a cell structure which has the potential to be compatible with cheap low-purity silicon substrates. In our cell design the charge-collecting p–n junction protrudes into the substrate like fingers, thus significantly reducing the required carrier diffusion length compared to a front planar junction cell. The macroporous structure is created by electrochemical anodisation of an n-type silicon substrate in an HF and H2O2 (aqueous) electrolyte. The pores are loaded with a boron-containing glass which is then annealed to diffuse the dopant into the silicon substrate forming a volume junction. The anodisation conditions have been optimised using intentionally contaminated single-crystal silicon as a model system. We characterise the junction formed by electron beam induced current and current–voltage measurements. The anodisation study is extended to n-type multicrystalline silicon and it is found that the orientation of the grains strongly influences the geometry of the pores formed. The potential for using this cell structure for low-cost photovoltaics is discussed and potential problems are highlighted.


Porous Silicon Anodisation Process Pore Density Electron Beam Induce Current Electrochemical Anodisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Prof. P.R. Wilshaw (University of Oxford) for initiating the project and for many helpful discussions, Radka Chakalova (University of Oxford) for assistance with sample processing and Dr Semih Senkader (REC Wafer) for provision of the n-type mc-Si wafers. JDM is the holder of a Royal Academy of Engineering/EPSRC Research Fellowship, and an EPSRC First Grant (EP/J01768X/1).


  1. 1.
    Pizzini S (2010) Sol Energy Mater Sol Cells 94:1528CrossRefGoogle Scholar
  2. 2.
    Luque A (2011) J Appl Phys 110:031301CrossRefGoogle Scholar
  3. 3.
    Hermann S, Merkle A, Ulzhofer C, Dorn S, Feilhaber I, Berger M, Friedrich T, Brendermuhl T, Harder NP, Ehlers L, Weise K, Meyer R, Brendel R (2011) Sol Energy Mater Sol Cells 95:1069CrossRefGoogle Scholar
  4. 4.
    Zhao JW, Green A, Martin A (1997) Prog Photovolt Res Appl 5:169CrossRefGoogle Scholar
  5. 5.
    Chong CM, Wenham SR, Green MA (1988) Appl Phys Lett 52:407CrossRefGoogle Scholar
  6. 6.
    Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2012) Prog Photovolt Res Appl 20:12CrossRefGoogle Scholar
  7. 7.
    Braga AFB, Moreira SP, Zampieri PR, Bacchin JMG, Mei PR (2008) Sol Energy Mater Sol Cells 92:418CrossRefGoogle Scholar
  8. 8.
    Degoulange J, Périchaud I, Trassy C, Martinuzzi S (2008) Sol Energy Mater Sol Cells 92:1269CrossRefGoogle Scholar
  9. 9.
    Martinuzzi S, Périchaud I, Trassy C, Degoulange J (2009) Prog Photovolt Res Appl 17:297CrossRefGoogle Scholar
  10. 10.
    Mukashev BN, Abdullin KA, Tamendarov MF, Turmagambetov TS, Beketov BA, Page MR, Kline DM (2009) Sol Energy Mater Sol Cells 93:1785CrossRefGoogle Scholar
  11. 11.
    del Coso G, del Canizo C, Sinke WC (2010) Sol Energy Mater Sol Cells 94:345CrossRefGoogle Scholar
  12. 12.
    Osinniy V, Bomholt P, Nylandsted Larsen A, Enebakk E, Søiland A-K, Tronstad R, Safir Y (2011) Sol Energy Mater Sol Cells 95:564CrossRefGoogle Scholar
  13. 13.
    Wang TH, Ciszek TF, Schwerdtfeger CR, Moutinho H, Matson R (1996) Sol Energy Mater Sol Cells 41:19CrossRefGoogle Scholar
  14. 14.
    Lehmann V (2002) In: Electrochemistry of silicon: instrumentation, science, materials and applications, chap. 6. Wiley-VCH Verlag GmbH, Weinheim. doi: 10.1002/3527600272
  15. 15.
    Sun W, Kherani NP, Hirschman KD, Gadeken LL, Fauchet PM (2005) Adv Mater 17:1230CrossRefGoogle Scholar
  16. 16.
    Cojocaru A, Carstensen J, Ossei-Wusu EK, Leisner M, Riemenschneider O, Föll H (2009) Phys Status Solidi C 6:1571CrossRefGoogle Scholar
  17. 17.
    Clarkson JP, See GG, Veeramachaneni B, Gadeken LL, Hirschman KD, Fauchet PM (2009) Phys Status Solidi C 6:1754CrossRefGoogle Scholar
  18. 18.
    Sato H, Yamaguchi T, Isobe T, Hoji S, Homma T (2010) Electrochem Commun 12:765CrossRefGoogle Scholar
  19. 19.
    Bao XQ, Jiao JW, Wang YL, Na KW, Choi H (2007) J Electrochem Soc 154:175CrossRefGoogle Scholar
  20. 20.
    Bao XQ, Lin JL, Jaio JW, Wang YL (2007) Electrochim Acta 53:823CrossRefGoogle Scholar
  21. 21.
    Wang Y, Murphy JD, Wilshaw PR (2010) J Electrochem Soc 157:884CrossRefGoogle Scholar
  22. 22.
    Cotter JE, Guo JH, Cousins PJ, Abbot MD, Chen FW, Fisher KC (2006) IEEE Trans Electron Devices 53:1893CrossRefGoogle Scholar
  23. 23.
    Singh PK, Kumar R, Lai M, Singh SN, Das BK (2001) Sol Energy Mater Sol Cells 70:103CrossRefGoogle Scholar
  24. 24.
    Istratov AA, Hieslmair H, Weber ER (1999) Appl Phys A 69:13CrossRefGoogle Scholar
  25. 25.
    Rein S, Glunz SW (2005) J Appl Phys 98:113711CrossRefGoogle Scholar
  26. 26.
    Murphy JD, Falster RJ (2011) Phys Status Solidi Rapid Res Lett 5:370CrossRefGoogle Scholar
  27. 27.
    Leamy HJ (1982) J Appl Phys 53:R51CrossRefGoogle Scholar
  28. 28.
    Steingrube S, Breitenstein O, Ramspeck K, Glunz S, Schenk A, Altermatt PP (2011) J Appl Phys 110:014515CrossRefGoogle Scholar
  29. 29.
    Namavar F, Maruska HP, Kalkhoran NM (1992) Appl Phys Lett 60:2514CrossRefGoogle Scholar
  30. 30.
    Kaushik VS, Datye AK, Tsao SS, Guilinger TR, Kelly MJ (1991) Mater Lett 11:109CrossRefGoogle Scholar
  31. 31.
    Jäger C, Finkenberger B, Jäger W, Christopherson M, Carstensen J, Föll H (2000) Mater Sci Eng B 69:199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • G. F. Martins
    • 1
  • A. J. R. Thompson
    • 1
  • B. Goller
    • 2
    • 3
  • D. Kovalev
    • 2
  • J. D. Murphy
    • 1
  1. 1.Department of MaterialsUniversity of OxfordOxfordUK
  2. 2.Department of PhysicsUniversity of BathBathUK
  3. 3.Infineon Technologies AGVillachAustria

Personalised recommendations