Skip to main content
Log in

Thermomechanical environment characterisation in injection moulding and its relation to the mechanical properties of talc-filled polypropylene

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study is focused on the establishment of relationships between the injection moulding processing conditions, the applied thermomechanical environment (TME) and the tensile properties of talc-filled polypropylene, adopting a new extended concept of thermomechanical indices (TMI). In this approach, TMI are calculated from computational simulations of the moulding process that characterise the TME during processing, which are then related to the mechanical properties of the mouldings. In this study, this concept is extended to both the filling and the packing phases, with new TMI defined related to the morphology developed during these phases. A design of experiments approach based on Taguchi orthogonal arrays was adopted to vary the injection moulding parameters (injection flow rate, injection temperature, mould wall temperature and holding pressure), and thus, the TME. Results from analysis of variance for injection-moulded tensile specimens have shown that among the considered processing conditions, the flow rate is the most significant parameter for the Young’s modulus; the flow rate and melt temperature are the most significant for the strain at break; and the holding pressure and flow rate are the most significant for the stress at yield. The yield stress and Young’s modulus were found to be governed mostly by the thermostress index (TSI, related to the orientation of the skin layer), whilst the strain at break depends on both the TSI and the cooling index (CI, associated to the crystallinity degree of the core region). The proposed TMI approach provides predictive capabilities of the mechanical response of injection-moulded components, which is a valuable input during their design stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aurrekoetxea J, Sarrionandia MA, Urrutibeascoa I, Maspoch M (2003) Polymer 44:6959

    Article  CAS  Google Scholar 

  2. Godinho JS, Cunha AM, Crawford RJ (2000) Plast Rubber Compos 29:329

    CAS  Google Scholar 

  3. Housmans J-W, Gahleitner M, Peters GW, Meijer HE (2009) Polymer 50:2304

    Article  CAS  Google Scholar 

  4. Viana JC, Billon N, Cunha AM (2004) Polym Eng Sci 44:1522

    Article  CAS  Google Scholar 

  5. Viana JC, Cunha AM, Billon N (2000) In: ANTEC 2000 plastics: annual technical conference, Orlando, USA, May 7–11, 2000, Society of Plastics Engineers, p 617

  6. Kalay G, Bevis MJ (1997) J Polym Sci B 35:241

    Article  CAS  Google Scholar 

  7. Cermak R, Obadal M, Ponizil P, Polaskova M, Stoklasa K, Heckova J (2006) Eur Polym J 42:2185

    Article  CAS  Google Scholar 

  8. Davé P, Chundury D (1997) J Inject Mold Technol 1:181

    Google Scholar 

  9. Guerrica-Echevarría G, Eguiazábal JI, Nazábal J (1998) Eur Polym J 34:1213

    Article  Google Scholar 

  10. Ozcelik B, Ozbay A, Demirbas E (2010) Int Commun Heat Mass Transfer 37:1359

    Article  CAS  Google Scholar 

  11. Sahin S, Yayla P (2005) Polym Test 24:1012

    Article  CAS  Google Scholar 

  12. Shie J-R (2008) Polym Adv Technol 19:73

    Article  CAS  Google Scholar 

  13. Yang Y-K (2006) Mater Manuf Process 21:915

    Article  Google Scholar 

  14. Zhou Y, Mallick P (2005) Polym Eng Sci 45:755

    Article  CAS  Google Scholar 

  15. Kalay G, Bevis M (1997) J Polym Sci B 35:265

    Article  CAS  Google Scholar 

  16. Cermak R, Obadal M, Ponizil P, Polaskova M, Stoklasa K, Lengalova A (2005) Eur Polym J 41:1838

    Article  CAS  Google Scholar 

  17. Pantani R, Coccorullo I, Speranza V, Titomanlio G (2005) Prog Polym Sci 30:1185

    Article  CAS  Google Scholar 

  18. Viana JC, Cunha AM, Billon N (2002) Polymer 43:4185

    Article  CAS  Google Scholar 

  19. Demiray M, Isayev A (1996) SPE ANTEC Tech Papers 42:1576

    Google Scholar 

  20. Viana JC, Cunha AM, Billon N (2002) In: Annual conference of the polymer processing society (PPS-18), Guimarães, Portugal, June 16–20, 2002, Polymer Processing Society

  21. Mok SL, Kwong CK, Lau WS (1999) Adv Polym Technol 18:225

    Article  CAS  Google Scholar 

  22. Barbosa CN, Viana JC, Franzen M, Simoes R (2012) Polym Eng Sci 52:1845

    Article  CAS  Google Scholar 

  23. Cunha AM, Godinho JS, Viana JC (2000) In: Cunha AM, Fakirov S (eds) Structure development during polymer processing. Kluwer, Dordrecht, p 255

    Chapter  Google Scholar 

  24. Moldflow Inc., Moldflow Plastics Insight 5.0 (2004) documentation

  25. Viana JC (2000) Mechanical characterization of injection moulded plates, PhD thesis, University of Minho

  26. Ribeiro CJ, Viana JC (2011) In: Chiaberge M (ed) New trends and developments in automotive system engineering. Intech Publishers, Rijeka. ISBN 978-953-307-517-4, p 65

Download references

Acknowledgements

Foundation for Science and Technology, Lisbon, through the 3° Quadro Comunitário de Apoio, the POCTI and FEDER programs, and project PEst-C/CTM/LA0025/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos N. Barbosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, C.N., Simoes, R., Franzen, M. et al. Thermomechanical environment characterisation in injection moulding and its relation to the mechanical properties of talc-filled polypropylene. J Mater Sci 48, 2597–2607 (2013). https://doi.org/10.1007/s10853-012-7052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7052-4

Keywords

Navigation