Journal of Materials Science

, Volume 48, Issue 6, pp 2574–2580 | Cite as

Effect of solute interaction on interfacial segregation and grain boundary embrittlement in binary alloys

  • Pavel Lejček


The effect of solute interaction on interfacial segregation and intergranular embrittlement is modeled on the basis of the combined Fowler and Rice–Wang approaches in a binary system using the chosen values of standard thermodynamic parameters of interfacial segregation and varied values of the binary interaction coefficients. It is clearly shown that attractive interaction strengthens interfacial segregation and substantially enhances intergranular embrittlement, while repulsive interaction exhibits an opposite effect. This finding is demonstrated in the available literature data.


Grain Boundary Attractive Interaction Repulsive Interaction Surface Segregation Boundary Segregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support of the Czech Science Foundation (Grant P108/12/0144) and Ministry of Education, Youth and Sports of the Czech Republic (Grant CZ.1.05/2.1.00/01.0040) is gratefully acknowledged.


  1. 1.
    Hondros ED, Seah MP, Hofmann S, Lejček P (1996) In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th edn. North-Holland, Amsterdam, p 1201CrossRefGoogle Scholar
  2. 2.
    Grabke HJ (1999) In: Briant CL (ed) Impurities in engineering materials. Marcel Dekker, New York, p 143Google Scholar
  3. 3.
    Lejček P (2010) Grain boundary segregation in metals. Springer, HeidelbergGoogle Scholar
  4. 4.
    Wu R, Freeman AJ, Olson GB (1994) Phys Rev B 50:75CrossRefGoogle Scholar
  5. 5.
    Krasko GL, Olson GB (1990) Solid State Commun 76:247CrossRefGoogle Scholar
  6. 6.
    Rice JR, Wang JS (1989) Mater Sci Eng A 107:23CrossRefGoogle Scholar
  7. 7.
    Grabke HJ (1986) Steel Res 57:178Google Scholar
  8. 8.
    Erhart J, Grabke HJ (1981) Metal Sci 15:401CrossRefGoogle Scholar
  9. 9.
    Grabke HJ (1987) In: Latanision RM, Jones RH (eds) Chemistry and physics of fracture. Nijhoff, Dordrecht, p 388CrossRefGoogle Scholar
  10. 10.
    Seah MP, Lea C (1975) Philos Mag 31:77CrossRefGoogle Scholar
  11. 11.
    Lejček P (2004) J Alloys Compd 378:85CrossRefGoogle Scholar
  12. 12.
    Grabke HJ (1989) ISIJ Int 29:529CrossRefGoogle Scholar
  13. 13.
    Seah MP, Lea C (1975) Philos Mag 31:627CrossRefGoogle Scholar
  14. 14.
    Guttmann M (1995) Thermochemical interaction versus site competition in grain boundary segregation and embrtittlement in multicomponent systems, pp C7-85–C7-96Google Scholar
  15. 15.
    Ustinovshikov Y (1984) Metal Sci 18:545CrossRefGoogle Scholar
  16. 16.
    Lejček P, Hofmann S (1991) Acta Metall Mater 39:2469CrossRefGoogle Scholar
  17. 17.
    Guttmann M (1983) In: Latanision RM, Pickens JR (eds) Atomistics of fracture. Plenum Press, New York, p 465CrossRefGoogle Scholar
  18. 18.
    Schweinfest R, Paxton AT, Finnis MW (2004) Nature 432:1008CrossRefGoogle Scholar
  19. 19.
    Všianská M, Šob M (2011) Prog Mater Sci 56:817CrossRefGoogle Scholar
  20. 20.
    Yamaguchi M (2011) Metall Mater Trans A 42:319CrossRefGoogle Scholar
  21. 21.
    Geng WT, Freeman AJ, Wu R, Olson GB (2000) Phys Rev B 62:6208CrossRefGoogle Scholar
  22. 22.
    Lejček P, Hofmann S (2008) Crit Rev Solid State Mater Sci 33:133CrossRefGoogle Scholar
  23. 23.
    Yuasa M, Mabuchi M (2010) Phys Rev B 82:094108CrossRefGoogle Scholar
  24. 24.
    Fen YQ, Wang CY (2001) Comput Mater Sci 20:48CrossRefGoogle Scholar
  25. 25.
    Wu R, Freeman AJ, Olson GB (2004) Science 265:376CrossRefGoogle Scholar
  26. 26.
    Lejček P, Hofmann S, Krajnikov AV (1997) Mater Sci Eng A 234–236:283Google Scholar
  27. 27.
    Seah MP (1990) In: Briggs D, Seah MP (eds) Practical surface analysis, vol 1, 2nd edn. Wiley, Chichester, p 311Google Scholar
  28. 28.
    Lejček P, Pokluda J, Šandera P, Horníková J, Jenko M (2012) Surf Sci 606:258CrossRefGoogle Scholar
  29. 29.
    Geng WT, Freeman AJ, Olson GB (2001) Phys Rev B 63:165415CrossRefGoogle Scholar
  30. 30.
    Farkas D, Nogueira R, Ruda M, Hyde B (2005) Metall Mater Trans A 36:2067CrossRefGoogle Scholar
  31. 31.
    Shang JX, Zhao XD, Wang FH, Wang CY, Xu HB (2006) Comput Mater Sci 38:217CrossRefGoogle Scholar
  32. 32.
    Gay AS, Fraczkiewicz A, Biscondi M (1999) Origines de la segregation intergranulaire du bore dans les alliages ordonnes FeAl(B2). In: Maziere D (ed) Proc. 41e colloque de métallurgie de l’INSTN, Ségrégation interfaciale dans les solides, Saclay, 23–25 June 1998. EDP Sciences, Les Ulis, France, pp Pr4-75–Pr4-80Google Scholar
  33. 33.
    Chen ZZ, Wang CY (2006) J Phys Condens Matter 17:6645CrossRefGoogle Scholar
  34. 34.
    Muschik T, Gust W, Hofmann S, Predel B (1989) Acta Metall 37:2917CrossRefGoogle Scholar
  35. 35.
    Lopez GA, Gust W, Mittemeijer EJ (1999) Scr Mater 49:747CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Institute of PhysicsAS CRPraha 8Czech Republic

Personalised recommendations