Advertisement

Journal of Materials Science

, Volume 48, Issue 13, pp 4698–4704 | Cite as

Hardness and microstructure of interstitial free steels in the early stage of high-pressure torsion

  • Yuepeng Song
  • Wenke Wang
  • Dongsheng Gao
  • Eun Yoo Yoon
  • Dong Jun Lee
  • Chong Soo Lee
  • Hyoung Seop Kim
Nanostructured Materials

Abstract

The hardness and microstructure distributions in interstitial free (IF) steel disks processed via the high-pressure torsion (HPT) process with an early stage (up to 1 turn) are investigated using experimental and simulation approaches. The results indicate that the deformation in the HPT-processed IF steel disk is inhomogeneous, providing almost linearly increasing hardness from the center to the edge regions. In particular, near the surface of the disk is a soft region that shrinks with increasing numbers of revolutions. Compared with the compression-only disks by the HPT die, there is a hardness hill in the center region of the HPT-processed disk. The hardness distributions in the HPT disks indicate that the deformation proceeds gradually from the edge to the center with the degree of revolutions. In addition, as the degree of revolutions increases, the strain in the center region increases and the plastic deformation becomes uniform along the radial direction. The finite element analyses strongly support the conclusions of the experimental results.

Keywords

Steel Disk Finite Element Method Simulation Hardness Distribution Severe Deformation Interstitial Free 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported by Key Laboratory of Functional Crystals and Laser Technology TIPC, CAS, and Graduate Innovative program of Shandong Province (SDYY11079). NSFC (5100 1111), Program of “Twelfth Five-Year” National Science and Technology Support Plan (2011BAD12B02). HSK acknowledges that this study was supported by a grant from the Fundamental R&D Program for Core Technology of Materials (100372751-55551) funded by the Ministry of Knowledge Economy, Korea. The simulation was supported by grant No. KSC-2012-C2-09 from Korea Institute of Science and Technology Information.

References

  1. 1.
    Kim HS, Estrin Y (2001) Appl Phys Lett 79:4115CrossRefGoogle Scholar
  2. 2.
    Liu J, Cui H, Zhou X, Wu X, Zhang J (2012) Met Mater Int 18:121CrossRefGoogle Scholar
  3. 3.
    Kim HS, Suryanarayana C, Kim SJ (1998) Powder Metall 41:217Google Scholar
  4. 4.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58:33CrossRefGoogle Scholar
  5. 5.
    Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893CrossRefGoogle Scholar
  6. 6.
    Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579CrossRefGoogle Scholar
  7. 7.
    Latypov MI, Alexandrov IV, Beygelzimer YE, Lee S, Kim HS (2012) Comput Mater Sci 60:194CrossRefGoogle Scholar
  8. 8.
    Zhilyaev AP, Oh-ishi K, Langdon TG, McNelley TR (2005) Mater Sci Eng A410–411:277Google Scholar
  9. 9.
    Edalati K, Fujioka T, Horita Z (2008) Mater Sci Eng A497:168Google Scholar
  10. 10.
    Figueiredo RB, Aguilar MT, PauloR Cetlin, Langdon TG (2011) Metall Mater Trans 42A:3013CrossRefGoogle Scholar
  11. 11.
    Hohenwarter A, Bachmaier A, Gludovatz B, Scheriau S, Pippan R (2009) Int J Mater Res 100:1653CrossRefGoogle Scholar
  12. 12.
    Bayramoglu S, Gür CH, Alexandrov IV, Abramova MM (2012) Mater Sci Eng A527:927Google Scholar
  13. 13.
    Kim HS, Ryu WS, Janecek M, Baik SC, Estrin Y (2005) Adv Eng Mater 7:43CrossRefGoogle Scholar
  14. 14.
    Hadzima B, Janecek M, Estrin Y, Kim HS (2007) Mater Sci Eng A462:243Google Scholar
  15. 15.
    Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Mater Sci Eng A387–389:809Google Scholar
  16. 16.
    Song Y, Yoon EY, Lee DJ, Lee JH, Kim HS (2011) Mater Sci Eng A528:4840Google Scholar
  17. 17.
    Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203CrossRefGoogle Scholar
  18. 18.
    Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) J Mech Phys Solid 56:1186CrossRefGoogle Scholar
  19. 19.
    Hebesberger T, Stuwe HP, Vorhauer A, Wetscher F, Pippan R (2005) Acta Mater 53:393CrossRefGoogle Scholar
  20. 20.
    Cao Y, Wang YB, Alhajeri SN, Liao XZ, Zheng WL, Ringer SP, Langdon TG, Zhu YT (2010) J Mater Sci 45:765. doi: 10.1007/s10853-009-3998-2 CrossRefGoogle Scholar
  21. 21.
    Vorhauer A, Pippan R (2004) Scr Mater 51:921CrossRefGoogle Scholar
  22. 22.
    Kim HS (2001) J Mater Proc Technol 113:617CrossRefGoogle Scholar
  23. 23.
    Yoon SC, Horita Z, Kim HS (2008) J Mater Proc Technol 201:32CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yuepeng Song
    • 1
    • 2
    • 3
  • Wenke Wang
    • 2
  • Dongsheng Gao
    • 3
  • Eun Yoo Yoon
    • 1
  • Dong Jun Lee
    • 1
  • Chong Soo Lee
    • 4
  • Hyoung Seop Kim
    • 1
  1. 1.Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangKorea
  2. 2.Mechanical and Electronic Engineering CollegeShandong Agricultural UniversityTaianChina
  3. 3.Shandong Provincial Key Laboratory of Horticultural Machineries and EquipmentsShandong Agricultural UniversityTaianChina
  4. 4.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangKorea

Personalised recommendations