Journal of Materials Science

, Volume 48, Issue 6, pp 2299–2307 | Cite as

Magnetic properties of multicore magnetite nanoparticles prepared by glass crystallisation

  • Christian WorschEmail author
  • Markus Büttner
  • Peter Schaaf
  • Ruzha Harizanova
  • Christian Rüssel
  • Frank Schmidl
  • Paul Seidel


A glass with the composition 13K2O*13Al2O3*16B2O3*43SiO2*15Fe2O3−x was melted and rapidly quenched in water. This leads to the formation of phase-separated droplets with diameters from 100 to 150 nm. Magnetite crystals with a size of 10–20 nm precipitate within these droplets. The magnetite containing phase-separated regions can be separated from the glass by dissolving the SiO2-rich amorphous glass matrix through boiling the pulverized glass in a concentrated aqueous sodium hydroxide solution. The residual, magnetite containing phase-separated droplets match multicore magnetite nanoparticles (McNP). The magnetite nanoparticles show superparamagnetic behaviour and as McNP, lead to a higher effective magnetic radius than single crystals. Magnetisation measurements of the McNP indicate that the particles show a narrow hysteresis, but the ratio of remanent to saturation magnetisation is not high enough for uniaxial anisotropy. The additionally performed temperature-dependent magnetorelaxometry (TMRX) measurements show peaks at 13 and 39 K in the distribution of the magnetic moment relaxation. The obtained inter-particle distance of the magnetite within the McNP is smaller than 5 d C (core diameter), leading to strong magnetic interactions.


Magnetite Remanent Magnetisation Maghemite Glass Matrix Uniaxial Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank S. Prass for the technical support, M. Röder for the magnetic measurements and T. Müller and M. Schiffler for helping us to finalize this article. This study was supported by the EU project BIODIAGNOSTICS 017002.


  1. 1.
    Klein C, Hurlbut CS (1985) In: Dana JD (ed) Manual of crystallography, 21st edn. Wiley, New YorkGoogle Scholar
  2. 2.
    Harris LA, Goff JD, Carmichael AY, Riffle JS, Harbun JJ, St. Pierre TG, Saunders M (2003) Chem Mater 15:1367CrossRefGoogle Scholar
  3. 3.
    Tartaj P, Morales MP, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) J Phys D Appl Phys 36:R182CrossRefGoogle Scholar
  4. 4.
    Görnert P, Pfeiffer H, Sinn E, Müller R, Schüppel W, Rosler M, Batlle X, Delmuro MG, Tejada J, Gali S (1994) IEEE Tran Magn 30:714CrossRefGoogle Scholar
  5. 5.
    Odenbach S (2003) J Phys-Condens Mat 15:1497CrossRefGoogle Scholar
  6. 6.
    Suzuki M, Fullem SI, Suzuki IS (2009) Phys Rev B 79:024418CrossRefGoogle Scholar
  7. 7.
    Jordan A, Wust P, Scholz R, Tesche B, Fähling H, Mitrovics T, Vogl T, Cervós-Navarro J, Felix R (1996) Hyperthermia 12:705CrossRefGoogle Scholar
  8. 8.
    Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) J Phys D Appl Phys 36:R167CrossRefGoogle Scholar
  9. 9.
    Hergt R, Andrä W (1998) d’Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG. IEEE Tran Magn 34:3745CrossRefGoogle Scholar
  10. 10.
    To SYC, Castro DJ, Lufkin RB, Soudant J, Saxton RE (1992) J Clin Laser Med Sur 10:159Google Scholar
  11. 11.
    Andrä W, Nowak H (1988) In: Andra W (ed) Magnetism in medicine. Wiley VCH Verlag Berlin GmbH, BerlinGoogle Scholar
  12. 12.
    Schwalbe M, Gansau C, Röder M, Buske N, Bahr M, Wagner K, Görnert P, Schnabelrauch M, Pachmann K, Kliche KO, Goetze T, Weitschies W, Höffken K, Clement JH (2002) J Cancer Res Clin 128:57Google Scholar
  13. 13.
    Chan DCF, Kirpotin DB, Bunn PA (1993) J Magn Mater 122:374CrossRefGoogle Scholar
  14. 14.
    Hilger I, Andrä W, Hergt R, Hiergeist R, Kaiser WA (2002) Radiology 218:570Google Scholar
  15. 15.
    Wagner K, Kautz A, Roder M, Schwalbe M, Pachmann K, Clement JH, Schnabelrauch M (2004) Appl Organomet Chem 18:514CrossRefGoogle Scholar
  16. 16.
    Buyukhatipoglu K, Clyne AM (2010) J Nanopart Res 12:1495CrossRefGoogle Scholar
  17. 17.
    Woltz S, Hiergeist R, Görnert P, Rüssel C (2006) J Magn Magn Mater 298:7CrossRefGoogle Scholar
  18. 18.
    Schaller V, Wahnström G, Sanz-Velasco A, Gustafsson S, Olsson E (2009) Phys Rev B 80:092406CrossRefGoogle Scholar
  19. 19.
    Yang C, Wang G, Lu Z, Sun J, Zhuang J, Yang W (2005) J Mater Chem 15:4252CrossRefGoogle Scholar
  20. 20.
    Dutz S, Kettering M, Hilger I, Müller R, Zeisberger M (2011) Nanotechnology 22:265102CrossRefGoogle Scholar
  21. 21.
    Harizanova R, Völksch G, Rüssel C (2010) J Mater Sci 45:1350. doi: 10.1007/s10853-009-4090-7 CrossRefGoogle Scholar
  22. 22.
    Vogel W (1992) Glaschemie. Springer, BerlinGoogle Scholar
  23. 23.
    Gonser U, Schaaf P (1991) Aubertin. F 66:95Google Scholar
  24. 24.
    Schaaf P, Blaes L, Welsch J, Jacoby H, Aubertin F, Gonser U (1990) Hyperfine Interact 58:2541CrossRefGoogle Scholar
  25. 25.
    Schaaf P, Krämer A, Blaes L, Wagner G, Aubertin F, Gonser U (1991) Nucl Instrum Meth B 53:184CrossRefGoogle Scholar
  26. 26.
    Rixecker G, Schaaf P, Gonser U (1993) J Phys D Appl Phys 26:870CrossRefGoogle Scholar
  27. 27.
    Romanus E, Koettig T, Glöckl G, Prass S, Schmidl F, Heinrich J, Gopinadhan G, Berkov Dv, Helm CA, Weitschies W, Weber P, Seidel P (2007) Nanotechnology 18:115709CrossRefGoogle Scholar
  28. 28.
    Klug HP, Alexander LE (1954) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New YorkGoogle Scholar
  29. 29.
    Büttner M, Weber P, Lang C, Röder M, Schuler D, Görnert P, Seidel P (2011) J Magn Magn Mater 323:1179CrossRefGoogle Scholar
  30. 30.
    Büttner M, Weber P, Schmidl F, Seidel P, Röder M, Schnabelrauch M, Wagner K, Görnert P, Glockl G, Weitschies W (2011) J Nanopart Res 13:165CrossRefGoogle Scholar
  31. 31.
    Karamanov A, Pisciella P, Cantalini C, Pelino M (2000) J Am Ceram Soc 83:3153CrossRefGoogle Scholar
  32. 32.
    Karamanov A, Pelino M (2001) J Non-Cryst Sol 281:139CrossRefGoogle Scholar
  33. 33.
    Bersani D, Lottici PP, Montenero A (1999) J Raman Spectrosc 30:355CrossRefGoogle Scholar
  34. 34.
    Dyar MD (1985) Am Mineral 70:304Google Scholar
  35. 35.
    Worsch C, Schaaf P, Harizanova R, Rüssel C (2012) J Mater Sci 47:5886. doi: 10.1364/AO.47.005886 CrossRefGoogle Scholar
  36. 36.
    Romero M, Rincon JM (1999) J Am Ceram Soc 82:1313CrossRefGoogle Scholar
  37. 37.
    Woltz S, Rüssel C (2004) J Non-Cryst Solids 337:226CrossRefGoogle Scholar
  38. 38.
    Harizanova R, Völksch G, Rüssel C (2011) Mater Res Bull 46:81CrossRefGoogle Scholar
  39. 39.
    Harizanova R, Keding R, Völksch G, Rüssel C (2008) Eur J Glass Sci Technol B 49:177Google Scholar
  40. 40.
    Harizanova R, Keding R, Rüssel C (2008) J Non-Cryst Solids 254:65CrossRefGoogle Scholar
  41. 41.
    Wisniewski W, Harizanova R, Völksch G, Rüssel C (2011) Cryst Eng Comm 13:4025Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Christian Worsch
    • 1
    Email author
  • Markus Büttner
    • 2
  • Peter Schaaf
    • 3
  • Ruzha Harizanova
    • 4
  • Christian Rüssel
    • 1
  • Frank Schmidl
    • 2
  • Paul Seidel
    • 2
  1. 1.Otto-Schott-InstitutJena UniversityJenaGermany
  2. 2.Institut für FestkörperphysikJena UniversityJenaGermany
  3. 3.Ilmenau University of TechnologieIlmenauGermany
  4. 4.University of Chemical Technology and MetallurgySofiaBulgaria

Personalised recommendations