Journal of Materials Science

, Volume 48, Issue 5, pp 2251–2257 | Cite as

An in situ experimental study of grain growth in a nanocrystalline Fe91Ni8Zr1 alloy

  • Hasan Kotan
  • Kris A. Darling
  • Mostafa Saber
  • Ronald O. Scattergood
  • Carl C. Koch


Grain growth and microstructural evolution of thermally stabilized Fe91Ni8Zr1 were investigated by in situ and ex situ studies. Our investigations suggest that the microstructural evolution is fairly slow and the microstructure shows stabilization up to about 700 °C. Above this temperature, a certain fraction of grains grow abnormally into the nanocrystalline matrix, resulting in a bimodal microstructure and causing the complete loss of thermal stability. The reason for abnormal grain growth and the loss of thermal stability is identified as the appearance of the fcc γ-phase and consequent reduction in the total area of grain boundaries and the overall stored energy.

List of symbols


Grain boundary mobility


Activation energy


Velocity of grain boundary


Grain diameter


Specimen thickness


Incremental growth


Change in volume free energy


Change in surface energy


Change in the interphase energy-grain boundary energy


Free surface area


Grain interface area


Volume of grains


Bulk free energy per volume


Surface energy per area


α-to-γ interface energy per area


Grain boundary energy per area


Pressure acting on the grain interfaces

\( \tilde{D} \)



Frequency factor


Diffusion distance


Annealing time


Annealing temperature


Gas constant


  1. 1.
    Gleiter H (1989) Prog Mater Sci 33(4):223CrossRefGoogle Scholar
  2. 2.
    Birringer R (1989) Mater Sci Eng A 117:33CrossRefGoogle Scholar
  3. 3.
    Suryanarayana C (2002) Jom-J Min Metals Mater Soc 54(9):24CrossRefGoogle Scholar
  4. 4.
    Koch CC, Scattergood RO, Darling KA, Semones JE (2008) J Mater Sci 43(23–24):7264CrossRefGoogle Scholar
  5. 5.
    Koch CC (2007) J Mater Sci 42(5):1403CrossRefGoogle Scholar
  6. 6.
    Suryanarayana C (1995) Int Mater Rev 40(2):41CrossRefGoogle Scholar
  7. 7.
    Gleiter H (1992) Adv Mater 4(7–8):474CrossRefGoogle Scholar
  8. 8.
    VanLeeuwen BK, Darling KA, Koch CC, Scattergood RO, Butler BG (2010) Acta Mater 58(12):4292CrossRefGoogle Scholar
  9. 9.
    Krill CE, Ehrhardt H, Birringer R (2005) Zeitschrift Fur Metallkunde 96(10):1134Google Scholar
  10. 10.
    Shaw L, Luo H, Villegas J, Miracle D (2003) Acta Mater 51(9):2647CrossRefGoogle Scholar
  11. 11.
    Frolov T, Darling KA, Kecskes LJ, Mishin Y (2012) Acta Mater 60(5):2158CrossRefGoogle Scholar
  12. 12.
    Darling KA, VanLeeuwen BK, Koch CC, Scattergood RO (2010) Mater Sci Eng, A 527(15):3572CrossRefGoogle Scholar
  13. 13.
    Perez RJ, Jiang HG, Dogan CP, Lavernia EJ (1998) Metall Mater Transac A 29(10):2469CrossRefGoogle Scholar
  14. 14.
    Kirchheim R (2007) Acta Mater 55(15):5129CrossRefGoogle Scholar
  15. 15.
    Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT (1999) Acta Mater 47(7):2143CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Smith CJE, Dillamore IL (1970) Metal Sci 4(1):161Google Scholar
  18. 18.
    Kotan H, Saber M, Koch CC, Scattergood RO (2012) Mater Sci Eng, A 552:310CrossRefGoogle Scholar
  19. 19.
    Darling KA, VanLeeuwen BK, Semones JE, Koch CC, Scattergood RO, Kecskes LJ, Mathaudhu SN (2011) Mater Sci Eng, A 528(13–14):4365Google Scholar
  20. 20.
    Shen TD, Schwarz RB, Feng S, Swadener JG, Huang JY, Tang M, Zhang H, Vogel SC, Zhao YS (2007) Acta Mater 55(15):5007CrossRefGoogle Scholar
  21. 21.
    Malow TR, Koch CC (1997) Acta Mater 45(5):2177CrossRefGoogle Scholar
  22. 22.
    Kotan H, Darling KA, Saber M, Koch CC, Scattergood RO (2012) J Alloys Comp. doi:10.1016/j.jallcom.2012.10.179
  23. 23.
    Dake JM, Krill CE (2012) Scripta Mater 66(6):390CrossRefGoogle Scholar
  24. 24.
    Culity BD (1977) Element of X-ray diffraction, 2nd edn. Addison-Wesley, MAGoogle Scholar
  25. 25.
    Murr LE (1975) Interfacial phenomena in metals and alloys. Addision-Wesley, MAGoogle Scholar
  26. 26.
    Yang Z, Johnson RA (1993) Modell Simul Mater Sci Eng 1(5):707CrossRefGoogle Scholar
  27. 27.
    Kubaschewski O, Goldbeck OV (1949) Trans Faraday Soc 45:948Google Scholar
  28. 28.
    Raghavan V (1992) Indian Inst Metals 6B:1094Google Scholar
  29. 29.
    Syn CK, Jin S, Morris JW (1976) Metall Transac A 7:1827Google Scholar
  30. 30.
    Mun SH, Watanabe M, Li X, Oh KH, Williams DB, Lee HC (2002) Metall Mater Transac A 33:1057CrossRefGoogle Scholar
  31. 31.
    Askil J (1970) Tracer diffusion data for metals, alloys and simple oxides. Plenum Publishing Corporation, NYCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Hasan Kotan
    • 1
  • Kris A. Darling
    • 2
  • Mostafa Saber
    • 1
  • Ronald O. Scattergood
    • 1
  • Carl C. Koch
    • 1
  1. 1.Department of Materials Science and EngineeringNC State UniversityRaleighUSA
  2. 2.U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving GroundAberdeenUSA

Personalised recommendations