Journal of Materials Science

, Volume 48, Issue 7, pp 2893–2907 | Cite as

Reduction of nickel oxide particles by hydrogen studied in an environmental TEM

  • Q. Jeangros
  • T. W. Hansen
  • J. B. Wagner
  • C. D. Damsgaard
  • R. E. Dunin-Borkowski
  • C. Hébert
  • J. Van herle
  • A. Hessler-Wyser
Energy Materials & Thermoelectrics

In situ reduction of nickel oxide (NiO) particles is performed under 1.3 mbar of hydrogen gas (H2) in an environmental transmission electron microscope (ETEM). Images, diffraction patterns and electron energy-loss spectra (EELS) are acquired to monitor the structural and chemical evolution of the system during reduction, whilst increasing the temperature. Ni nucleation on NiO is either observed to be epitaxial or to involve the formation of randomly oriented grains. The growth of Ni crystallites and the movement of interfaces result in the formation of pores within the NiO grains to accommodate the volume shrinkage associated with the reduction. Densification is then observed when the sample is nearly fully reduced. The reaction kinetics is obtained using EELS by monitoring changes in the shapes of the Ni L2,3 white lines. The activation energy for NiO reduction is calculated from the EELS data using both a physical model-fitting technique and a model-independent method. The results of the model-fitting procedure suggest that the reaction is described by Avrami models (whereby the growth and impingement of Ni domains control the reaction), in agreement with the ETEM observations.


Kissinger Method SiO2 Film Thermal Drift Solid Oxide Fuel Cell Anode Environmental Transmission Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Support from the Swiss National Science Foundation is gratefully acknowledged (project ‘IN SItu TEm study of reduction and reoxidation of Ni(O)-ceramic composite (INSITE)’). The authors thank D. Laub for TEM sample preparation, G. Lucas for Digital Micrograph plugins, D. Alexander for useful discussions about EELS, and P. Stadelmann for help with Mathematica ® programming. The A.P. Møller and Chastine Mc-Kinney Møller Foundation is gratefully acknowledged for their contribution towards the establishment of the Center for Electron Nanoscopy in the Technical University of Denmark.

Supplementary material

10853_2012_7001_MOESM1_ESM.pdf (1 mb)
Supplementary Figure: Irradiation damage observed in the ETEM. a Creation of a Ni3O4 superstructure upon introduction of H2 gas into the ETEM when performing HRTEM. b Anisotropic erosion of NiO at a dose rate of ~ 8000 e nm−2 s−1 at a temperature of 365 °C. c Carbon encapsulation during NiO reduction at 500 °C. d Formation of Au nanoparticles on the SiO2 film at 600 °C. (PDF 1075 kb)


  1. 1.
    Kung HH (1989) Transition metal oxides: surface chemistry and catalysis. Elsevier, New YorkGoogle Scholar
  2. 2.
    Thomas JM, Thomas WJ (1996) Principles and practice of heterogeneous catalysis. VCH, New YorkGoogle Scholar
  3. 3.
    Delmon B (1997) Handbook of heterogeneous catalysis. Wiley VCH, New YorkGoogle Scholar
  4. 4.
    Furstenau RP, McDougall G, Langell MA (1985) Surf Sci 150(1):55CrossRefGoogle Scholar
  5. 5.
    Lescop B, Jay JP, Fanjoux G (2004) Surf Sci 548(1–3):83CrossRefGoogle Scholar
  6. 6.
    Hidayat T, Rhamdhani MA, Jak E, Hayes PC (2008) Miner Eng 21(2):157CrossRefGoogle Scholar
  7. 7.
    Hidayat T, Rhamdhani MA, Jak E, Hayes PC (2009) Metall Mater Trans B 40(4):462CrossRefGoogle Scholar
  8. 8.
    Hidayat T, Rhamdhani MA, Jak E, Hayes PC (2009) Metall Mater Trans B 40(4):474CrossRefGoogle Scholar
  9. 9.
    Hidayat T, Rhamdhani MA, Jak E, Hayes PC (2009) Metall Mater Trans B 40(1):1CrossRefGoogle Scholar
  10. 10.
    Minh NQ (1993) J Am Ceram Soc 76(3):563CrossRefGoogle Scholar
  11. 11.
    Singhal SC, Kendall K (2003) High temperature solid oxide fuel cell - fundamentals, design and applications. Elseviser, OxfordGoogle Scholar
  12. 12.
    Benton AF, Emmett PH (1924) J Am Chem Soc 46(12):2728CrossRefGoogle Scholar
  13. 13.
    Richardson JT, Scates R, Twigg MV (2003) Appl Catal A 246(1):137CrossRefGoogle Scholar
  14. 14.
    Rodriguez JA, Hanson JC, Frenkel AI, Kim JY, Perez M (2002) J Am Chem Soc 124(2):346CrossRefGoogle Scholar
  15. 15.
    Hossain MM, De Lasa HI (2007) AIChE J 53(7):1817CrossRefGoogle Scholar
  16. 16.
    Jankovic B, Adnadevic B, Mentus S (2008) Chem Eng Sci 63(3):567CrossRefGoogle Scholar
  17. 17.
    Erri P, Varma A (2009) Ind Eng Chem Res 48(1):4CrossRefGoogle Scholar
  18. 18.
    Syed-Hassan SSA, Li CZ (2011) Int J Chem Kinet 43(12):667CrossRefGoogle Scholar
  19. 19.
    Khawam A, Flanagan DR (2006) J Phys Chem B 110(35):17315CrossRefGoogle Scholar
  20. 20.
    Avrami M (1939) J Chem Phys 7(12):1103CrossRefGoogle Scholar
  21. 21.
    Avrami M (1940) J Chem Phys 8(2):212CrossRefGoogle Scholar
  22. 22.
    Avrami M (1941) J Chem Phys 9(2):177CrossRefGoogle Scholar
  23. 23.
    Jankovic B, Adnadevic B, Mentus S (2007) Thermochim Acta 456(1):48CrossRefGoogle Scholar
  24. 24.
    Yagi S, Kunii D (1955) Symp (Int) Combust 5(1):231CrossRefGoogle Scholar
  25. 25.
    Utigard TA, Wu M, Plascencia G, Marin T (2005) Chem Eng Sci 60(7):2061CrossRefGoogle Scholar
  26. 26.
    Szekely J, Evans JW (1971) Metall Trans 2(6):1699Google Scholar
  27. 27.
    L’Vov BV (2010) Russ J Appl Chem 83(5):778CrossRefGoogle Scholar
  28. 28.
    Sharma R (2009) Microsc Res Tech 72(3):144CrossRefGoogle Scholar
  29. 29.
    Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsøe H (2002) Science 295(5562):2053CrossRefGoogle Scholar
  30. 30.
    Chenna S, Banerjee R, Crozier PA (2011) Chem Cat Chem 3(6):1051Google Scholar
  31. 31.
    Yoshida H, Kuwauchi Y, Jinschek JR, Sun K, Tanaka S, Kohyama M, Shimada S, Haruta M, Takeda S (2012) Science 335(6066):317CrossRefGoogle Scholar
  32. 32.
    Hofmann S, Sharma R, Wirth CT, Cervantes-Sodi F, Ducati C, Kasama T, Dunin-Borkowski RE, Drucker J, Bennett P, Robertson J (2008) Nat Mater 7(5):372CrossRefGoogle Scholar
  33. 33.
    Sharma R (2005) J Mater Res 20(7):1695CrossRefGoogle Scholar
  34. 34.
    Jeangros Q, Faes A, Wagner JB, Hansen TW, Aschauer U, Van herle J, Hessler-Wyser A, Dunin-Borkowski RE (2010) Acta Mater 58:4578CrossRefGoogle Scholar
  35. 35.
    Langford JI, Wilson AJC (1978) J Appl Crystallogr 11(2):102CrossRefGoogle Scholar
  36. 36.
    Hansen TW, Wagner JB, Dunin-Borkowski RE (2010) Mater Sci Technol 26(11):1338CrossRefGoogle Scholar
  37. 37.
    Sharma R (2012) Micron 43(11):1147CrossRefGoogle Scholar
  38. 38.
    Egerton RF (2009) Rep Prog Phys 72(1):016502CrossRefGoogle Scholar
  39. 39.
    Leapman RD, Grunes LA, Fejes PL (1982) Phys Rev B 26(2):614CrossRefGoogle Scholar
  40. 40.
    Riedl T, Gemming T, Wetzig K (2006) Ultramicroscopy 106(4–5):284CrossRefGoogle Scholar
  41. 41.
    Mitterbauer C, Kothleitner G, Grogger W, Zandbergen H, Freitag B, Tiemeijer P, Hofer F (2003) Ultramicroscopy 96(3–4):469CrossRefGoogle Scholar
  42. 42.
    Bonnet N, Brun N, Colliex C (1999) Ultramicroscopy 77(3–4):97CrossRefGoogle Scholar
  43. 43.
    Keenan MR, Kotula PG (2004) Surf Interface Anal 36(3):203CrossRefGoogle Scholar
  44. 44.
    Gatan (2010) Digital micrograph™ 1.84.1282 edn. GATANGoogle Scholar
  45. 45.
    Pearson DH, Ahn CC, Fultz B (1993) Phys Rev B 47(14):8471CrossRefGoogle Scholar
  46. 46.
    van Aken PA, Liebscher B (2002) Phys Chem Miner 29(3):188CrossRefGoogle Scholar
  47. 47.
    van Aken PA, Liebscher B, Styrsa VJ (1998) Phys Chem Miner 25(5):323CrossRefGoogle Scholar
  48. 48.
    Rez P, Moore ES, Sharma R (2008) Microsc Microanal 14(Suppl. 2):1382Google Scholar
  49. 49.
    Sharma R, Crozier PA, Kang ZC, Eyring L (2004) Phil Mag 84(25–26):2731CrossRefGoogle Scholar
  50. 50.
    Kissinger HE (1957) Anal Chem 29(11):1702CrossRefGoogle Scholar
  51. 51.
    Senum GI, Yang RT (1977) J Therm Anal 11(3):445CrossRefGoogle Scholar
  52. 52.
    Tarfaoui A (1996) Modelling the kinetics of reduction by temperature programming. Delft University of Technology, DelftGoogle Scholar
  53. 53.
    Nelder JA, Mead R (1965) The Comput J 7(4):308CrossRefGoogle Scholar
  54. 54.
    Faes A, Nakajo A, Hessler-Wyser A, Dubois D, Brisse A, Modena S, Van herle J (2009) J Power Sources 193:55CrossRefGoogle Scholar
  55. 55.
    Stadelmann PA (1987) Ultramicroscopy 21(2):131CrossRefGoogle Scholar
  56. 56.
    Adnadevic B, Jankovic B (2008) Phys B 403(21–22):4132CrossRefGoogle Scholar
  57. 57.
    Buckett MI, Marks LD (1990) Surf Sci 232(3):353CrossRefGoogle Scholar
  58. 58.
    Little JA, Evans JW, Westmacott KH (1980) Metall Trans B 11(3):519CrossRefGoogle Scholar
  59. 59.
    Ostyn KM, Carter CB (1982) Surf Sci 121(3):360CrossRefGoogle Scholar
  60. 60.
    Belton GR, Jordan AS (1967) The J Phys Chem 71(12):4114CrossRefGoogle Scholar
  61. 61.
    Du K, Ernst F, Garrels M, Payer J (2008) Int J Mater Res 99(5):548CrossRefGoogle Scholar
  62. 62.
    Gubner A, Landes H, Metzger J, Seeg H, Stübner R (1997) Investigations into the degradation of the cermet anode of a solid oxide fuel cells. In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) Solid Oxide Fuel Cells V, The electrochemical society, pp 844Google Scholar
  63. 63.
    Sarantaridis D, Atkinson A (2007) Fuel Cells 7(3):246CrossRefGoogle Scholar
  64. 64.
    Richardson JT, Lei M, Turk B, Forster K, Twigg MV (1994) Appl Catal A 110(2):217CrossRefGoogle Scholar
  65. 65.
    Egerton RF, Li P, Malac M (2004) Micron 35(6):399CrossRefGoogle Scholar
  66. 66.
    Zhang Z, Su D (2009) Ultramicroscopy 109(6):766CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Q. Jeangros
    • 1
  • T. W. Hansen
    • 2
  • J. B. Wagner
    • 2
  • C. D. Damsgaard
    • 2
  • R. E. Dunin-Borkowski
    • 3
  • C. Hébert
    • 1
  • J. Van herle
    • 4
  • A. Hessler-Wyser
    • 1
  1. 1.Interdisciplinary Centre for Electron MicroscopyEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Center for Electron NanoscopyTechnical University of DenmarkLyngbyDenmark
  3. 3.Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg InstituteJülich Research CentreJülichGermany
  4. 4.Industrial Energy Systems LaboratoryEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations