Journal of Materials Science

, Volume 48, Issue 5, pp 2245–2250 | Cite as

Dielectric properties of BaTiO3–Bi(Zn1/2Ti1/2)O3–NaNbO3 solid solutions

  • Natthaphon Raengthon
  • Harlan J. Brown-Shaklee
  • Geoff L. Brennecka
  • David P. Cann


In order to develop dielectric ceramics with temperature-stable permittivity characteristics, perovskite BaTiO3–Bi(Zn1/2Ti1/2)O3–NaNbO3 ceramic solid solutions were investigated with a particular focus on effects of BaTiO3 and NaNbO3 contents on the dielectric properties of ternary compounds. Keeping the ratios of the other two constituents constant, decreasing the BaTiO3 content leads to a broadening of the temperature-dependent permittivity maximum and a decrease in the overall permittivity. For compositions of constant BaTiO3 content, replacing Bi(Zn1/2Ti1/2)O3 with NaNbO3 shifts the temperature of the maximum permittivity to lower temperatures (e.g., to −103 °C for a composition of 70BT–5BZT–25NN) while maintaining a broad permittivity peak with temperature, which for the 50BT–25BZT–25NN composition also satisfies the X9R standard. Thus, the investigation of BT–BZT–NN compounds resulted in promising dielectric properties with broad temperature ranges of high permittivity, which is of interest for advanced capacitor applications.


BaTiO3 Relative Permittivity NaNbO3 Single Perovskite Phase Sodium Niobate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A portion of this study was supported by the Energy Storage Program managed by Dr. Imre Gyuk of the Department of Energy’s Office of Electricity Delivery and Energy Reliability. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.


  1. 1.
    Nittala K, Brennecka GL, Tuttle BA, Jones JL (2011) J Mater Sci 46:2148. doi: 10.1007/s10853-010-5051-x CrossRefGoogle Scholar
  2. 2.
    Guerra JDS, Garcia JE, Ochoa DA, Pelaiz-Barranco A, Garcia-Zaldivar O, Calderon-Pinar F (2012) J Mater Sci 47:5715. doi: 10.1007/s10853-012-6461-8 CrossRefGoogle Scholar
  3. 3.
    Wen B, Zhang Y, Liu X, Ma L, Wang X (2012) J Mater Sci 47:4299. doi: 10.1007/s10853-012-6280-y CrossRefGoogle Scholar
  4. 4.
    Tsuzuku K, Couzi M (2012) J Mater Sci 47:4481. doi: 10.1007/s10853-012-6310-9 CrossRefGoogle Scholar
  5. 5.
    Martin-Arias L, Castro A, Alguero M (2012) J Mater Sci 47:3729. doi: 10.1007/s10853-011-6222-0 CrossRefGoogle Scholar
  6. 6.
    Huang CC, Cann DP (2008) J Appl Phys 104:024117CrossRefGoogle Scholar
  7. 7.
    Suchomel MR, Davies PK (2005) Appl Phys Lett 86:262905CrossRefGoogle Scholar
  8. 8.
    Xiong B, Hao H, Zhang S, Liu H, Cao M (2011) J Am Ceram Soc 94:3412CrossRefGoogle Scholar
  9. 9.
    Sun R, Wang X, Shi J, Wang L (2011) Appl Phys A 104:129CrossRefGoogle Scholar
  10. 10.
    Chen J, Tan X, Jo W, Rodel J (2009) J Appl Phys 106:034109CrossRefGoogle Scholar
  11. 11.
    Leist T, Chen J, Jo W, Aulbach E, Suffner J, Rodel J (2012) J Am Ceram Soc 95:711CrossRefGoogle Scholar
  12. 12.
    Fujii I, Nakashima K, Kumada N, Wada S (2012) J Ceram Soc Jpn 120:30CrossRefGoogle Scholar
  13. 13.
    Choi SM, Stringer CJ, Shrout TR, Randall CA (2005) J Appl Phys 98:034108CrossRefGoogle Scholar
  14. 14.
    Ogihara H, Randall CA, Trolier-McKinstry S (2009) J Am Ceram Soc 92:110CrossRefGoogle Scholar
  15. 15.
    Raengthon N, Cann DP (2012) J Electroceram 28:165CrossRefGoogle Scholar
  16. 16.
    Huang CC, Cann DP, Tan X, Vittayakorn N (2007) J Appl Phys 102:044103CrossRefGoogle Scholar
  17. 17.
    Raengthon N, Sebastian T, Cumming D, Reaney IM, Cann DP (2012) J Am Ceram Soc 95:3554. doi: 10.1111/j.1551-2916.2012.05340.x CrossRefGoogle Scholar
  18. 18.
    Shiratori Y, Magrez A, Dornseiffer J, Haegel F, Pithan C, Waser R (2005) J Phys Chem B 109:20122CrossRefGoogle Scholar
  19. 19.
    Mishra SK, Choudhury N, Chaplot SL, Krishna PSR, Mittal R (2007) Phys Rev B 76:024110CrossRefGoogle Scholar
  20. 20.
    Zuo R, Rodel J, Chen R, Li L (2006) J Am Ceram Soc 89:2010CrossRefGoogle Scholar
  21. 21.
    Guo Y, Kakimoto K, Ohsato H (2005) Mater Lett 59:241CrossRefGoogle Scholar
  22. 22.
    Khemakhem H, Simon A, Von Der Muhll R, Ravez J (2000) J Phys Condens Matter 12:5951CrossRefGoogle Scholar
  23. 23.
    Huang CC, Vittayakorn N, Prasatkhetragarn A, Gibbons BJ, Cann DP (2009) Jpn J Appl Phys 48:031401CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Natthaphon Raengthon
    • 1
  • Harlan J. Brown-Shaklee
    • 2
  • Geoff L. Brennecka
    • 2
  • David P. Cann
    • 1
  1. 1.Materials Science, School of Mechanical, Industrial, and Manufacturing EngineeringOregon State UniversityCorvallisUSA
  2. 2.Sandia National LaboratoriesMaterials Science and Engineering CenterAlbuquerqueUSA

Personalised recommendations