Journal of Materials Science

, Volume 48, Issue 5, pp 2236–2244 | Cite as

Solution-based synthesis of AgI coatings for low-friction applications

  • Jill SundbergEmail author
  • Fang Mao
  • Anna M. Andersson
  • Urban Wiklund
  • Ulf Jansson


Thin films of AgI have been synthesized from Ag surfaces and elemental I2 using a rapid and simple solution-based method. The effect of using ultrasound during the synthesis was studied, as well as the influence of the nature of the solvent, the I2 concentration, the time, the temperature, and the sonication power. The films were characterized using X-ray diffraction, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy, and found to consist of β-AgI, possibly along with some γ-AgI. It was found that sonication increases the film thickness and grain size. The nature of the solvent has a profound effect on the film growth, with mixtures of water and ethanol leading to thicker coatings than films synthesized using either component in its pure form. Selected coatings were tribologically tested, and the AgI coating was seen to lower the friction coefficient significantly compared to a reference Ag surface under otherwise identical conditions. Long lifetimes (over 30000 cycles) were seen against a Ag counter surface. Tracks and wear scars were studied using SEM and Raman spectroscopy, and it was found that the friction level remains low as long as there is AgI in the points of contact. This method is found to be a simple and fast way to deposit AgI on Ag with large possibilities of tuning the thickness and grains sizes of the resulting films, thereby optimizing it for the desired use.


Friction Coefficient Wear Track Wear Scar Pure Ethanol PbI2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge the financial support of the InnoEnergy Knowledge & Innovation Community, the Swedish Foundation for Strategic Research (within the project “Technical advancement through controlled tribofilms”), and Vinnova Designed Materials.


  1. 1.
    Arnell S, Andersson G (2001) In: Proceedings of the forty-seventh IEEE Holm conference on electrical contacts p 239Google Scholar
  2. 2.
    Arnell S, Stridh B (2003) Electrical contact element and use of the contact element. vol US 6,565,983 BI. ABB AB, Västerås (SE)Google Scholar
  3. 3.
    Lauridsen J, Eklund P, Lu J, Knutsson A, Oden M, Mannerbro R, Andersson AM, Hultman L (2012) Tribol Lett 46(2):187. doi: 10.1007/s11249-012-9938-3 CrossRefGoogle Scholar
  4. 4.
    Guo Y-G, Hu Y-S, Lee J-S, Maier J (2006) Electrochem Commun 8(7):1179CrossRefGoogle Scholar
  5. 5.
    Kaushik R, Hariharan K (1988) Solid State Ionics 28-30, Part 1 (0):732Google Scholar
  6. 6.
    Buck RP (1968) Anal Chem 40(10):1432. doi: 10.1021/ac60266a023 CrossRefGoogle Scholar
  7. 7.
    James D, Rao TP (2012) Potentiometric sensing of iodide using polymeric membranes of microwave stabilized β-AgI. Electrochim Acta 66:340CrossRefGoogle Scholar
  8. 8.
    Smyth DM, Cutler M (1959) J Electrochem Soc 106(2):107. doi: 10.1149/1.2427277 CrossRefGoogle Scholar
  9. 9.
    Shiojiri M, Hasegawa Y, Konishi K (1973) J Appl Phys 44(7):2996CrossRefGoogle Scholar
  10. 10.
    Bose SK, Sircar SC (1976) J Mater Sci 11(1):129. doi: 10.1007/bf00541084 CrossRefGoogle Scholar
  11. 11.
    Zheng Z, Liu AR, Wang SM, Huang BJ, Ma XM, Zhao HX, Li DP, Zhang LZ (2008) Mater Res Bull 43(8–9):2491CrossRefGoogle Scholar
  12. 12.
    Zheng Z, Liu AR, Wang SM, Huang BJ, Wong KW, Zhang XT, Hark SK, Lau WM (2008) J Mater Chem 18(8):852. doi: 10.1039/b719452h CrossRefGoogle Scholar
  13. 13.
    Huang B, Zheng Z, Yang F, Zhang Y, Pu D, Zhao H, Li D (2008) Solid State Ionics 179(35–36):2006CrossRefGoogle Scholar
  14. 14.
    Suslick KS, Gawienowski JJ, Schubert PF, Wang HH (1984) Ultrasonics 22(1):33. doi: 10.1016/0041-624x(84)90059-3 CrossRefGoogle Scholar
  15. 15.
    Suslick KS (1990) Science 247(4949):1439. doi: 10.1126/science.247.4949.1439 CrossRefGoogle Scholar
  16. 16.
    Suslick KS (1989) Sci Am 260(2):80CrossRefGoogle Scholar
  17. 17.
    Natl. Bur. Stand. (U.S.) C, 51 (1959) Natl. Bur. Stand. (U.S.), Circ. 539 8, 51Google Scholar
  18. 18.
    Natl. Bur. Stand. (U.S.) C, 48 (1960) Natl. Bur. Stand. (U.S.), Circ 539 9, 48Google Scholar
  19. 19.
    Chastain J, King RC (eds) (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics, Inc, Eden PrairieGoogle Scholar
  20. 20.
    Kuiry SC, Roy SK, Bose SK (1997) Metall Mater Trans B-Proc Metall Mater Proc Sci 28(6):1189. doi: 10.1007/s11663-997-0075-6 CrossRefGoogle Scholar
  21. 21.
    Mikhailov VA, Grigor’eva ÉF, Semina II (1969) J Struct Chem 9(6):855. doi: 10.1007/bf00744379 CrossRefGoogle Scholar
  22. 22.
    Senthil Kumar P, Sunandana CS (1998) Thin Solid Films 323(1–2):110CrossRefGoogle Scholar
  23. 23.
    Sáfrán G, Geszti O, Radnóczi G, Barna PB, Tóth K (1995) Thin Solid Films 259(1):96CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jill Sundberg
    • 1
    Email author
  • Fang Mao
    • 1
  • Anna M. Andersson
    • 2
  • Urban Wiklund
    • 3
  • Ulf Jansson
    • 1
  1. 1.Department of Chemistry-Ångström LaboratoryUppsala UniversityUppsalaSweden
  2. 2.ABB Corporate ResearchVästeråsSweden
  3. 3.Department of Engineering SciencesUppsala UniversityUppsalaSweden

Personalised recommendations