Journal of Materials Science

, Volume 48, Issue 5, pp 2151–2157 | Cite as

Structure, dielectric, ferroelectric, and energy density properties of (1 − x)BZT–xBCT ceramic capacitors for energy storage applications

  • Venkata Sreenivas PuliEmail author
  • Dhiren K. Pradhan
  • Douglas B. Chrisey
  • M. Tomozawa
  • G. L. Sharma
  • J. F. Scott
  • Ram S. KatiyarEmail author


We investigate the dielectric, ferroelectric, and energy density properties of Pb-free (1 − x)BZT–xBCT ceramic capacitors at higher sintering temperature (1600 °C). A significant increase in the dielectric constant, with relatively low loss was observed for the investigated {Ba(Zr0.2Ti0.8)O3}(1−x ){(Ba0.7Ca0.3)TiO3} x (x = 0.10, 0.15, 0.20) ceramics; however, electric breakdown was low (~140, 170, 134 kV/cm), and of which room temperature (300 K) charging curve energy density values are largest ~0.88, 0.94, and 0.87 J/cm3 with maximum high dielectric constant values ~7800, 8400, and 5200, respectively. Bulk ceramic BZT–BCT materials have shown interesting energy densities with good energy storage efficiency (~72 %) at high sintering temperature; they might be one of the strong candidates for high energy density capacitor applications in an environmentally protective atmosphere.


High Energy Density High Sinter Temperature Breakdown Strength Dielectric Breakdown Morphotropic Phase Boundary Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the National Science Foundation under Grant No. NSF-EFRI # 1038272. The authors are also thankful to Cristina Diaz Borrero, Material Characterization Center, University of Puerto Rico for doing SEM measurements. Author Venkata S. Puli thank D. Kishore Kumar, Department of chemistry, UPR, RP, for useful discussions.


  1. 1.
    Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM (2006) Science 313(5785):334CrossRefGoogle Scholar
  2. 2.
    Slenes KM, Winsor P, Scholtz T, Hudis M (2001) IEEE Trans Magn 37:324CrossRefGoogle Scholar
  3. 3.
    Ogihara H, Randall CA, Trolier-McKinstry S (2009) J Am Ceram Soc 92(8):1719CrossRefGoogle Scholar
  4. 4.
    Karan NK, Saavedra-Arias JJ, Perez M, Thomas R, Katiyar RS (2008) Appl Phys Lett 92:012903CrossRefGoogle Scholar
  5. 5.
    Chen X, Zhang H, Cao F, Wang G, Dong X, Yan G (2009) J Appl Phys 106:034105CrossRefGoogle Scholar
  6. 6.
    Ma B, Narayanan M, Balachandran U (2009) Mater Lett 63:1353CrossRefGoogle Scholar
  7. 7.
    Ma B, Tong S, Narayanan M, Liu S, Chao S, Balachandran U (2011) Mater Res Bull 46:1124CrossRefGoogle Scholar
  8. 8.
    Liu W, Ren X (2009) Phys Rev Lett 103:257602CrossRefGoogle Scholar
  9. 9.
    Xue D, Zhou Y, Bao H, Gao J, Zhou C, Ren X (2011) Appl Phys Lett 99:122901CrossRefGoogle Scholar
  10. 10.
    Dixit A, Majumder SB, Dobal PS, Katiyar RS, Bhalla AS (2004) Thin Solid Films 447–448:284CrossRefGoogle Scholar
  11. 11.
    Choudhury S, Bhuiyan MA, Hoque SM (2011) Int Nano Lett 1(2):111Google Scholar
  12. 12.
    Chen T-Y, Chu S-Y, Juang Y-D (2002) Sens Actuators A 102:6CrossRefGoogle Scholar
  13. 13.
    Bao H, Zhou C, Xue D, Gao J, Ren X (2010) J Phys D Appl Phys 43:465401CrossRefGoogle Scholar
  14. 14.
    Shrout TR, Zhang SJJ (2007) Electroceramics 19:111Google Scholar
  15. 15.
    Takenaka T, Nagata HJ (2005) Eur Ceram Soc 25:2693CrossRefGoogle Scholar
  16. 16.
    Chen X, Ma HY, Ding W, Zhang Y, Zhao X, Lian X, Liu P (2011) J Am Ceram Soc 94(10):3364CrossRefGoogle Scholar
  17. 17.
    Victor P, Ranjith R, Krupanidhi SB (2003) J Appl Phys 94(12):7702CrossRefGoogle Scholar
  18. 18.
    Puli VS, Kumar A, Chrisey DB, Tomozawa M, Scott JF, Katiyar RS (2011) J Phys D Appl Phys 44:395403CrossRefGoogle Scholar
  19. 19.
    Palei PK, Kumar P (2012) J Appl Phys 51:011503CrossRefGoogle Scholar
  20. 20.
    Lee HS, Kimura T (1998) J Am Ceram Soc 81(12):3228CrossRefGoogle Scholar
  21. 21.
    Zhou C, Liu W, Xue D, Ren X, Bao H, Gao J, Zhang L (2012) Appl Phys Lett 100:222910CrossRefGoogle Scholar
  22. 22.
    Sen S, Choudhary RNP (2004) J Mater Sci Mater Electron 15:671CrossRefGoogle Scholar
  23. 23.
    Singh AK, Goel TC, Mendiratta RG, Thakur OP, Prakash C (2002) J Appl Phys 91(10):6626CrossRefGoogle Scholar
  24. 24.
    Ehmke MC, Ehrlich SN, Blendell JE, Bowman KJ (2012) J Appl Phys 111:124110CrossRefGoogle Scholar
  25. 25.
    Cao W, Randall CA (1996) J Phys Chem Solids 57(10):1499CrossRefGoogle Scholar
  26. 26.
    Smolenskii GA, Iagranovskaya A (1958) Sov Phys Tech Phys 3:1380Google Scholar
  27. 27.
    Piorra A, Petraru A, Kohlstedt H, Wuttig M, Quandt E (2011) J Appl Phys 109:104101CrossRefGoogle Scholar
  28. 28.
    Uchino K (2000) Ferroelectric devices. Marcel Dekker, New YorkGoogle Scholar
  29. 29.
    Pan J, Li K, Li J, Hsu T, Wang Q (2009) Appl Phys Lett 95:022902CrossRefGoogle Scholar
  30. 30.
    Yao K, Chen S, Rahimabady M, Mirshekarloo MS, Yu S, Tay FEH, Sritharan T, Lu L (2011) IEEE Trans Ultrason Ferroelectr Freq Control 58(9):1968CrossRefGoogle Scholar
  31. 31.
    Ricketts BW, Triani G, Hilton AD (2000) J Mater Sci Mater Electron 11(6):513CrossRefGoogle Scholar
  32. 32.
    Dong G, Ma S, Jun D, Cui J (2009) Ceram Int 35:2069CrossRefGoogle Scholar
  33. 33.
    Puli VS, Pradhan DK, Kumar A, Su X, Busta CM, Tomozawa M, Chrisey DB, Katiyar RS (2012) J Mater Sci Mater Electron. doi: 10.1007/s10854-012-0694-9 Google Scholar
  34. 34.
    Puli VS, Kumar A, Su X, Busta CM, Tomozawa M, Chrisey DB, Katiyar RS (2012) J Non Cryst Solids. doi: 10.1016/j.jnoncrysol.2012.05.018 Google Scholar
  35. 35.
    Zhou Y, Zhang Q, Luo J, Tang Q, Jun D (2011) Scripta Mater 65:296CrossRefGoogle Scholar
  36. 36.
    X Wang, Y Zhang, T Ma, Z Yuan, Q Zhang, C Deng, T Liang (2012) Int Appl Ceram Technol 1–6. doi: 10.1111/j.1744-7402.2011.02733.x

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Venkata Sreenivas Puli
    • 1
    Email author
  • Dhiren K. Pradhan
    • 1
  • Douglas B. Chrisey
    • 2
  • M. Tomozawa
    • 2
  • G. L. Sharma
    • 1
  • J. F. Scott
    • 3
  • Ram S. Katiyar
    • 1
    Email author
  1. 1.Department of Physics and Institute for Functional Nano MaterialsUniversity of Puerto RicoSan JuanUSA
  2. 2.Department of Materials Science and EngineeringRensselaer Polytechnic InstituteTroyUSA
  3. 3.Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUK

Personalised recommendations