Journal of Materials Science

, Volume 48, Issue 7, pp 2767–2778 | Cite as

Composite thermoelectric materials with embedded nanoparticles

  • Yi Ma
  • Richard Heijl
  • Anders E. C. PalmqvistEmail author
Energy Materials & Thermoelectrics


The current status of the development of composite thermoelectric materials with embedded nanoparticles is reviewed. An introduction is given to the suggested mechanisms of improving thermoelectric properties by inclusions of nanoparticles and to experimental methods used to prepare such composites. The progress made in the development of thermoelectric materials with embedded nanoparticles is then covered, grouping the studies according to the optimal temperature range of operation of the materials investigated. Most studies have been devoted to materials within the medium temperature range, followed by low temperature materials, whereas high temperature materials have not yet received much attention within this area. In the majority of the materials systems studied, reports of improved thermoelectric performance upon introduction of nanoparticles in bulk thermoelectrics are found. However, for continued progress in this area, there is a need for systematic experimental studies that unambiguously correlate the resulting physical effects of the nanoinclusions to the measured materials properties.


Clathrate Spark Plasma Sinter PbTe Bi2Te3 Seebeck Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial support from Mistra, the Swedish Foundation for Strategic Environmental Research, through the E4-Mistra program, and thank its members for fruitful discussions. AECP enjoys support from the Swedish Research Council for a Senior Researcher position.


  1. 1.
    Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG (2010) Adv Mater 22(36):3970. doi: 10.1002/adma.201000839 CrossRefGoogle Scholar
  2. 2.
    Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P (2007) Adv Mater 19(8):1043CrossRefGoogle Scholar
  3. 3.
    Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Energy Environ Sci 2(5):466CrossRefGoogle Scholar
  4. 4.
    Medlin DL, Snyder GJ (2009) Curr Opin Colloid Interface Sci 14(4):226. doi: 10.1016/j.cocis.2009.05.001 CrossRefGoogle Scholar
  5. 5.
    Hicks LD, Dresselhaus MS (1993) Phys Rev B 47(24):16631CrossRefGoogle Scholar
  6. 6.
    Hicks LD, Dresselhaus MS (1993) Phys Rev B 47(19):12727CrossRefGoogle Scholar
  7. 7.
    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Nature 413(6856):597. doi: 10.1038/35098012 CrossRefGoogle Scholar
  8. 8.
    Winkler M, Liu X, Konig JD, Buller S, Schurmann U, Kienle L, Bensch W, Bottner H (2012) J Mater Chem 22(22):11323CrossRefGoogle Scholar
  9. 9.
    Rowe DM, Shukla VS, Savvides N (1981) Nature 290(5809):765CrossRefGoogle Scholar
  10. 10.
    Bux SK, Fleurial JP, Kaner RB (2010) Chem Commun 46(44):8311. doi: 10.1039/c0cc02627a CrossRefGoogle Scholar
  11. 11.
    Fan SF, Zhao JN, Guo J, Yan QY, Ma J, Hng HH (2010) Appl Phys Lett 96(18):182104. doi: 10.1063/1.3427427 CrossRefGoogle Scholar
  12. 12.
    Zhao L-D, Zhang B-P, Liu W-S, Li J-F (2009) J Appl Phys 105(2):023704. doi: 10.1063/1.3063694 CrossRefGoogle Scholar
  13. 13.
    Scoville N, Bajgar C, Rolfe J, Fleurial JP, Vandersande J (1995) Nanostruct Mater 5(2):207CrossRefGoogle Scholar
  14. 14.
    Zebarjadi M, Esfarjani K, Shakouri A, Bahk J-H, Bian Z, Zeng G, Bowers J, Lu H, Zide J, Gossard A (2009) Appl Phys Lett 94(20):202105. doi: 10.1063/1.3132057 CrossRefGoogle Scholar
  15. 15.
    Zhou J, Li XB, Chen G, Yang RG (2010) Phys Rev B 82(11):115308. doi: 10.1103/Physrevb.82.115308 CrossRefGoogle Scholar
  16. 16.
    Faleev SV, Leonard F (2008) Phys Rev B 77(21):214304. doi: 10.1103/PhysRevB.77.214304 CrossRefGoogle Scholar
  17. 17.
    Kim W, Zide J, Gossard A, Klenov D, Stemmer S, Shakouri A, Majumdar A (2006) Phys Rev Lett 96(4):045901. doi: 10.1103/PhysRevLett.96.045901 CrossRefGoogle Scholar
  18. 18.
    Bhandari CM (1995) Minimizing the thermal conductivity. In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press LLC, Boca Raton, p 55Google Scholar
  19. 19.
    Prasher R (2006) J Heat Transf 128(7):627CrossRefGoogle Scholar
  20. 20.
    Mingo N, Hauser D, Kobayashi NP, Plissonnier M, Shakouri A (2009) Nano Lett 9(2):711. doi: 10.1021/nl8031982 CrossRefGoogle Scholar
  21. 21.
    Kim W, Majumdar A (2006) J Appl Phys 99(8):084306CrossRefGoogle Scholar
  22. 22.
    Ying CF, Truell R (1956) J Appl Phys 27(9):1086CrossRefGoogle Scholar
  23. 23.
    Kim W, Singer SL, Majumdar A, Zide JMO, Klenov D, Gossard AC, Stemmer S (2008) Nano Lett 8(7):2097. doi: 10.1021/nl080189t CrossRefGoogle Scholar
  24. 24.
    Zide JMO, Vashaee D, Bian ZX, Zeng G, Bowers JE, Shakouri A, Gossard AC (2006) Phys Rev B 74 (20):205335. doi: 10.1103/PhysRevB.74.205335
  25. 25.
    Heremans JP, Thrush CM, Morelli DT (2005) J Appl Phys 98(6):063703. doi: 10.1063/1.2037209 CrossRefGoogle Scholar
  26. 26.
    Vashaee D, Shakouri A (2004) Phys Rev Lett 92(10):106103. doi: 10.1103/PhysRevLett.92.106103 CrossRefGoogle Scholar
  27. 27.
    Urban JJ, Talapin DV, Shevchenko EV, Kagan CR, Murray CB (2007) Nat Mater 6(2):115. doi: 10.1038/nmat1826 CrossRefGoogle Scholar
  28. 28.
    Ristein J (2006) Science 313(5790):1057. doi: 10.1126/science.1127589 CrossRefGoogle Scholar
  29. 29.
    Mahan GD, Sofo JO (1996) Proc Natl Acad Sci 93(15):7436CrossRefGoogle Scholar
  30. 30.
    Mott NF, Jones H (1936) The theory of the properties of metals and alloys. The international series of monographs on physics, 1 edn. Oxford University Press, OxfordGoogle Scholar
  31. 31.
    Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ (2008) Science 321(5888):554. doi: 10.1126/science.1159725 CrossRefGoogle Scholar
  32. 32.
    Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z (2008) Science 320(5876):634. doi: 10.1126/science.1156446 CrossRefGoogle Scholar
  33. 33.
    Chen C, Liu DW, Zhang BP, Li JF (2011) J Electron Mater 40(5):942. doi: 10.1007/s11664-010-1463-2 CrossRefGoogle Scholar
  34. 34.
    Zhang T, Zhang Q, Jiang J, Xiong Z, Chen J, Zhang Y, Li W, Xu G (2011) Appl Phys Lett 98(2):022104. doi: 10.1063/1.3541654 CrossRefGoogle Scholar
  35. 35.
    Ganguly S, Zhou C, Morelli D, Sakamoto J, Uher C, Brock SL (2011) J Solid State Chem 184(12):3195. doi: 10.1016/j.jssc.2011.09.031 CrossRefGoogle Scholar
  36. 36.
    Sun JH, Qin XY, Xin HX, Li D, Pan L, Song CJ, Zhang J, Sun RR, Wang QQ, Liu YF (2010) J Alloys Compd 500(2):215. doi: 10.1016/j.jallcom.2010.04.006 CrossRefGoogle Scholar
  37. 37.
    Zhao L-D, Zhang B-P, Li J-F, Zhou M, Liu W-S, Liu J (2008) J Alloys Compd 455(1–2):259. doi: 10.1016/j.jallcom.2007.01.015 CrossRefGoogle Scholar
  38. 38.
    Chen LD, Kawahara T, Tang XF, Goto T, Hirai T, Dyck JS, Chen W, Uher C (2001) J Appl Phys 90(4):1864. doi: 10.1063/1.1388162 CrossRefGoogle Scholar
  39. 39.
    Tang X, Zhang Q, Chen L, Goto T, Hirai T (2005) J Appl Phys 97(9):093712. doi: 10.1063/1.1888048 CrossRefGoogle Scholar
  40. 40.
    Sales BC, Mandrus D, Williams RK (1996) Science 272(5266):1325. doi: 10.1126/science.272.5266.1325 CrossRefGoogle Scholar
  41. 41.
    Slack GA (1995) New materials and performance limits for thermoelectric cooling. In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press LLC, Boca Raton, p 407Google Scholar
  42. 42.
    Nolas GS, Cohn JL, Slack GA (1998) Phys Rev B 58(1):164CrossRefGoogle Scholar
  43. 43.
    Alboni PN, Ji X, He J, Gothard N, Tritt TM (2008) J Appl Phys 103(11):113707. doi: 10.1063/1.2937904 CrossRefGoogle Scholar
  44. 44.
    J. L. Mi, Zhao XB, Zhu TJ, Tu JP (2008) Thermoelectric properties of Yb0.15Co4Sb12 based nanocomposites with CoSb3 nano-inclusion. J Phys D 41(20):205403Google Scholar
  45. 45.
    Xiong Z, Chen X, Zhao X, Bai S, Huang X, Chen L (2009) Solid State Sci 11(9):1612. doi: 10.1016/j.solidstatesciences.2009.06.007 CrossRefGoogle Scholar
  46. 46.
    Zhao XY, Shi X, Chen LD, Zhang WQ, Bai SQ, Pei YZ, Li XY, Goto T (2006) Appl Phys Lett 89(9):092121. doi: 10.1016/1.2345249 CrossRefGoogle Scholar
  47. 47.
    Li H, Tang XF, Zhang QJ, Uher C (2009) Appl Phys Lett 94(10):102114. doi: 10.1063/1.3099804 CrossRefGoogle Scholar
  48. 48.
    Su X, Li H, Wang G, Chi H, Zhou X, Tang X, Zhang Q, Uher C (2011) Chem Mater 23(11):2948CrossRefGoogle Scholar
  49. 49.
    Chen Z, Jeffrey S, Donald M, Xiaoyuan Z, Guoyu W, Ctirad U (2011) J Appl Phys 109(6):063722CrossRefGoogle Scholar
  50. 50.
    Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG (2004) Science 303(5659):818. doi: 10.1126/science.1092963 CrossRefGoogle Scholar
  51. 51.
    Quarez E, Hsu K-F, Pcionek R, Frangis N, Polychroniadis EK, Kanatzidis MG (2005) J Am Chem Soc 127(25):9177CrossRefGoogle Scholar
  52. 52.
    Wang H, Li J-F, Nan C-W, Zhou M, Liu W, Zhang B-P, Kita T (2006) Appl Phys Lett 88(9):092104. doi: 10.1063/1.2181197 CrossRefGoogle Scholar
  53. 53.
    Zhou M, Li J-F, Kita T (2008) J Am Chem Soc 130(13):4527CrossRefGoogle Scholar
  54. 54.
    Kanatzidis MG (2009) Chem Mater 22(3):648CrossRefGoogle Scholar
  55. 55.
    Sootsman JR, Kong H, Uher C, D’Angelo JJ, Wu C-I, Hogan TP, Caillat T, Kanatzidis MG (2008) Angew Chem Int Ed 47(45):8618CrossRefGoogle Scholar
  56. 56.
    He JQ, Sootsman JR, Girard SN, Zheng JC, Wen JG, Zhu YM, Kanatzidis MG, Dravid VP (2010) J Am Chem Soc 132(25):8669. doi: 10.1021/ja1010948 CrossRefGoogle Scholar
  57. 57.
    Androulakis J, Lin C-H, Kong H-J, Uher C, Wu C-I, Hogan T, Cook BA, Caillat T, Paraskevopoulos KM, Kanatzidis MG (2007) J Am Chem Soc 129(31):9780. doi: 10.1021/ja071875h CrossRefGoogle Scholar
  58. 58.
    Ikeda T, Haile SM, Ravi VA, Azizgolshani H, Gascoin F, Snyder GJ (2007) Acta Mater 55(4):1227CrossRefGoogle Scholar
  59. 59.
    Johnsen S, He JQ, Androulakis J, Dravid VP, Todorov I, Chung DY, Kanatzidis MG (2011) J Am Chem Soc 133(10):3460. doi: 10.1021/ja109138p CrossRefGoogle Scholar
  60. 60.
    Biswas K, He JQ, Zhang QC, Wang GY, Uher C, Dravid VP, Kanatzidis MG (2011) Nat Chem 3(2):160. doi: 10.1038/nchem.955 CrossRefGoogle Scholar
  61. 61.
    Androulakis J, Todorov I, He JQ, Chung DY, Dravid V, Kanatzidis M (2011) J Am Chem Soc 133(28):10920. doi: 10.1021/ja203022c CrossRefGoogle Scholar
  62. 62.
    Zhao LD, Lo SH, He JQ, Li H, Biswas K, Androulakis J, Wu CI, Hogan TP, Chung DY, Dravid VP, Kanatzidis MG (2011) J Am Chem Soc 133(50):20476. doi: 10.1021/ja208658w CrossRefGoogle Scholar
  63. 63.
    Biswas K, He J, Blum ID, Wu C-I, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG (2012) Nature 489(7416):414. doi: 10.1038/nature11439 CrossRefGoogle Scholar
  64. 64.
    Uher C, Yang J, Hu S, Morelli DT, Meisner GP (1999) Phys Rev B 59(13):8615CrossRefGoogle Scholar
  65. 65.
    Shen Q, Chen L, Goto T, Hirai T, Yang J, Meisner GP, Uher C (2001) Appl Phys Lett 79(25):4165CrossRefGoogle Scholar
  66. 66.
    Yang J, Li H, Wu T, Zhang W, Chen L, Yang J (2008) Adv Funct Mater 18(19):2880CrossRefGoogle Scholar
  67. 67.
    Xie WJ, He J, Zhu S, Su XL, Wang SY, Holgate T, Graff JW, Ponnambalam V, Poon SJ, Tang XF, Zhang QJ, Tritt TM (2010) Acta Mater 58(14):4705. doi: 10.1016/j.actamat.2010.05.005 CrossRefGoogle Scholar
  68. 68.
    Poon SJ, Wu D, Zhu S, Xie WJ, Tritt TM, Thomas P, Venkatasubramanian R (2011) J Mater Res 26(22):2795. doi: 10.1557/jmr.2011.329 CrossRefGoogle Scholar
  69. 69.
    Christensen M, Johnsen S, Iversen BB (2010) Dalton Trans 39(4):978. doi: 10.1039/b916400f CrossRefGoogle Scholar
  70. 70.
    Saramat A, Svensson G, Palmqvist AEC, Stiewe C, Mueller E, Platzek D, Williams SGK, Rowe DM, Bryan JD, Stucky GD (2006) J Appl Phys 99(2):023708. doi: 10.1063/1.2163979 CrossRefGoogle Scholar
  71. 71.
    Toberer ES, May AF, Snyder GJ (2010) Chem Mater 22(3):624. doi: 10.1021/cm901956r CrossRefGoogle Scholar
  72. 72.
    Rogl P (2005) Formation of clathrates. In: ICT: 2005 24th international conference on thermoelectrics, Clemson, SCGoogle Scholar
  73. 73.
    Heijl R, Cederkrantz D, Nygren M, Palmqvist AEC (2012) J Appl Phys 112(4):044313CrossRefGoogle Scholar
  74. 74.
    Zaitsev VK, Fedorov MI, Gurieva EA, Eremin IS, Konstantinov PP, Samunin AY, Vedernikov MV (2006) Phys Rev B 74(4):045207. doi: 10.1103/PhysRevB.74.045207 CrossRefGoogle Scholar
  75. 75.
    Zhang Q, He J, Zhu TJ, Zhang SN, Zhao XB, Tritt TM (2008) Appl Phys Lett 93(10):102109. doi: 10.1063/1.2981516 CrossRefGoogle Scholar
  76. 76.
    Cederkrantz D, Farahi N, Borup KA, Iversen BB, Nygren M, Palmqvist AEC (2012) J Appl Phys 111(2):023701. doi: 10.1063/1.3675512 CrossRefGoogle Scholar
  77. 77.
    Wang XW, Lee H, Lan YC, Zhu GH, Joshi G, Wang DZ, Yang J, Muto AJ, Tang MY, Klatsky J, Song S, Dresselhaus MS, Chen G, Ren ZF (2008) Appl Phys Lett 93(19):193121. doi: 10.1063/1.3027060 CrossRefGoogle Scholar
  78. 78.
    Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould RW, Cuff DC, Tang MY, Dresselhaus MS, Chen G, Ren Z (2008) Nano Lett 8(12):4670CrossRefGoogle Scholar
  79. 79.
    May AF, Fleurial J-P, Snyder GJ (2008) Phys Rev B 78(12):125205. doi: 10.1103/PhysRevB.78.125205 CrossRefGoogle Scholar
  80. 80.
    Jeng M-S, Yang R, Song D, Chen G (2008) J Heat Transf 130(4):042410. doi: 10.1115/1.2818765 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yi Ma
    • 1
  • Richard Heijl
    • 1
  • Anders E. C. Palmqvist
    • 1
    Email author
  1. 1.Department of Chemical and Biological Engineering, Applied Surface ChemistryChalmers University of TechnologyGothenburgSweden

Personalised recommendations