Advertisement

Journal of Materials Science

, Volume 48, Issue 5, pp 1955–1965 | Cite as

Dispersion of the linear and nonlinear optical susceptibilities of disilver germanium sulfide from DFT calculations

  • A. H. Reshak
  • H. Kamarudin
  • S. Auluck
Article

Abstract

The dispersion of the linear and nonlinear optical susceptibilities is calculated for disilver germanium sulfide (Ag2GeS3) using the all-electron full potential linearized augmented plane wave (FP-LAPW) method. Calculations are performed with four exchange correlations namely local density approximation (LDA), general gradient approximation (GGA), Engel–Vosko generalized gradient approximation (EVGGA), and modified Becke–Johnson potential (mBJ). Our calculations give a band gap of 0.40 eV (LDA), 0.42 eV (GGA), 1.03 eV (EVGGA), and 1.30 eV (mBJ) in comparison with our measured gap (1.98 eV). The mBJ exchange correlation gives the best agreement with experiment. We find that the calculated linear optical susceptibilities of Ag2GeS3 show considerable anisotropy which is useful for second harmonic generation and optical parametric oscillation. To analyze the spectra of the calculated χ 113 (2) (ω), χ 232 (2) (ω), χ 311 (2) (ω), χ 322 (2) (ω), and χ 333 (2) (ω), we have correlated the features of these spectra with the features of ɛ2(ω) spectra as a function of ω/2 and ω. From the calculated dominant component |χ 333 (2) (ω)|, we find that the microscopic second-order hyperpolarizability, β333, the vector components along the dipole moment direction is 41.2 × 10−30 esu at static limit and 222.9 × 10−30 esu at λ = 1064 nm.

Keywords

Second Harmonic Generation General Gradient Approximation Local Density Approximation Full Potential Linear Augment Plane Wave Nonlinear Optical Susceptibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported from the Project CENAKVA (No. CZ.1.05/2.1.00/01.0024), the Grant No. 152/2010/Z of the Grant Agency of the University of South Bohemia. School of Material Engineering, Malaysia University of Perlis, P.O. Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis, Malaysia. S.A. thanks Council of Scientific and Industrial Research (CSIR), National Physical Laboratory for financial support.

References

  1. 1.
    Deb SK, Zunger A (eds) (1987) Ternary and multinary compounds. Materials Research Society, PittsburghGoogle Scholar
  2. 2.
    Jaffe GE, Zunger A (1983) Phys Rev B 28:5822vCrossRefGoogle Scholar
  3. 3.
    Jaffe GE, Zunger A (1984) Phys Rev B 29:1882CrossRefGoogle Scholar
  4. 4.
    Rincon C, Bellabarba C (1986) Phys Rev B 33:7160CrossRefGoogle Scholar
  5. 5.
    Parthe E (1964) Crystal chemistry of tetrahedral structures. Gordon and Breach, New YorkGoogle Scholar
  6. 6.
    Goryunova NA (1965) The chemistry of diamond-like semiconductors. Chapman and Hall, New YorkGoogle Scholar
  7. 7.
    Shay JL, Wernick JH (1974) Ternury chalcopyrite semiconductors: growth, electronic properties and applications. Pergamon, OxfordGoogle Scholar
  8. 8.
    Kaufmann U, Schneider J (1974) In: Treusch J (ed) Festkorperprobleme XIV. Vieweg, Braunschweig, p 229CrossRefGoogle Scholar
  9. 9.
    Wagner J (1977) In: Pankove JO (ed) Electroluminescence. Springer, Berlin, p 171CrossRefGoogle Scholar
  10. 10.
    Mackinnon A (1981) In: Treusch J (ed) Festkorperprobleme XXI. Vieweg, Dortmund, p 149CrossRefGoogle Scholar
  11. 11.
    Miller A, Mackinnon A, Weaire D (1981) In: Ehrenreich H, Seitz F, Turubull D (eds) Solid state physics, vol 36. Academic, New YorkGoogle Scholar
  12. 12.
    Pamplin BR, Kiyosawa T, Mastumoto K (1979) Prog Cryst Growth Charact 1:331CrossRefGoogle Scholar
  13. 13.
    Kazmerski LL (1983) Nuovo Cimento D2:2013CrossRefGoogle Scholar
  14. 14.
    Shay JL, Schiavone LM, Buehier E, Wernick JH (1972) J Appl Phys 43:2805CrossRefGoogle Scholar
  15. 15.
    Wagner S, Shay JL, Tell B, Kasper HM (1973) Appl Phys Lett 22:351CrossRefGoogle Scholar
  16. 16.
    Levine BF (1973) Phys Rev B 7:2600 and references thereinCrossRefGoogle Scholar
  17. 17.
    Hopkius FK (1995) Laser Focus World 31:87Google Scholar
  18. 18.
    Minayev VC (1991) Glassy semiconductor alloys. Metallurgiya, Moscow (in Russian)Google Scholar
  19. 19.
    ICSD#41711Google Scholar
  20. 20.
    Dovgii YO, Kityk IV (1991) Phys Status Solidi 166B:395CrossRefGoogle Scholar
  21. 21.
    Dovgii YO, Kityk IV, Man’kovskaya IG, Evstigneeva LN (1990) Phys Semicond 24(9):1004Google Scholar
  22. 22.
    Fedorchuk AO, Gorgut GP, Parasyuk OV, Lakshminarayana G, Kityk IV, Piasecki M (2011) J Phys Chem Solids 72:1354CrossRefGoogle Scholar
  23. 23.
    Nouneh K, Kityk IV, Viennois R, Benet S, Charar S, Paschen S, Ozga K (2006) Phys Rev B 73:035329CrossRefGoogle Scholar
  24. 24.
    Reshak AH, Auluck S, Piasecki M, Myronchuk GL, Parasyukd O, Kityk IV, Kamarudin H (2012) Spectrochim Acta Part A 93:274CrossRefGoogle Scholar
  25. 25.
    Armand P, Ibanez A, Tonnerre JM, Bouchet-Fabre B, Philippot E (1997) Phys Rev B 56:10852CrossRefGoogle Scholar
  26. 26.
    Boyd GD, Kasper H, McFee JH (1971) IEEE J Quantum Electron QE-7:563CrossRefGoogle Scholar
  27. 27.
    Chemla DS, Kupcek PJ, Robertson DS, Smith RC (1971) Opt Commun 3:29CrossRefGoogle Scholar
  28. 28.
    Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k, an augmented plane wave plus local orbitals program for calculating crystal properties. University of Technology, ViennaGoogle Scholar
  29. 29.
    Kohn W, Sham LJ (1965) Phys Rev A 140:1133Google Scholar
  30. 30.
    Perdew JP, Burke S, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  31. 31.
    Engel E, Vosko SH (1993) Phys Rev B 47:13164CrossRefGoogle Scholar
  32. 32.
    Tran Fabien, Blaha Peter (2009) Phys Rev Lett 102:226401CrossRefGoogle Scholar
  33. 33.
    Gao S (2003) Comput Phys Commun 153:190CrossRefGoogle Scholar
  34. 34.
    Schwarz Karlheinz (2003) J Solid State Chem 176:319CrossRefGoogle Scholar
  35. 35.
    Bassani F, Parravicini GP (1975) Electronic states and optical transitions in solids. Pergamon Press Ltd., Oxford, p 149Google Scholar
  36. 36.
    Sharma S, Dewhurst JK, Ambrosch-Draxl C (2003) Phys Rev B 67:165332CrossRefGoogle Scholar
  37. 37.
    Reshak AH (2005) Ph.D. thesis, Indian Institute of Technology-Rookee, IndiaGoogle Scholar
  38. 38.
    Reshak AH (2006) J Chem Phys 125:014708CrossRefGoogle Scholar
  39. 39.
    Reshak. AH (2006) J Chem Phys 124:014707CrossRefGoogle Scholar
  40. 40.
    Ambrosch-Draxl C, Sofo J (2006) Comput Phys Commun 175:1CrossRefGoogle Scholar
  41. 41.
    Aspnes DE (1972) Phys Rev B 6:4648CrossRefGoogle Scholar
  42. 42.
    Tributsch H, Naturforsch Z (1977) J Electroanal Chem 32A:972Google Scholar
  43. 43.
    Penn DR (1962) Phys Rev B 128:2093CrossRefGoogle Scholar
  44. 44.
    Reshak AH, Kityk V, Auluck S (2010) J Phys Chem B 114:16705CrossRefGoogle Scholar
  45. 45.
    Reshak AH, Auluck S, Kityk IV (2008) J Solid State Chem 181:789CrossRefGoogle Scholar
  46. 46.
    Reshak AH, Auluck S, Kityk IV (2008) J Phys Condens Matter 20:145209CrossRefGoogle Scholar
  47. 47.
    Reshak AH, Auluck S, Kityk IV (2008) Appl Phys A 91:451CrossRefGoogle Scholar
  48. 48.
    Reshak AH, Auluck S (2008) PMC Phys B 1:12CrossRefGoogle Scholar
  49. 49.
    Reshak AH, Auluck S, Kityk IV (2009) J Alloy Compd 473:20CrossRefGoogle Scholar
  50. 50.
    Gokce B, Adles EJ, Aspnes DE, Gundogdu K (2010) Proc Natl Acad Sci 10:17503CrossRefGoogle Scholar
  51. 51.
    Ouahrani T, Otero-de-la-Roza A, Reshak AH, Khenata R, Faraoun HI, Amrani B, Mebrouki M, Luanã V (2010) Phys B 405:3658CrossRefGoogle Scholar
  52. 52.
    Boyd RY (1982) Principles of nonlinear optics. Academic Press, New York, p 420Google Scholar
  53. 53.
    Boyd RW (2008) Nonlinear optics, 3rd edn. Acadmic Press is an imprint of Elsevier. ISBN: 978-0-12-369470-6Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of Complex Systems, FFWPCENAKVA-University of South Bohemia in CBNove HradyCzech Republic
  2. 2.School of Material EngineeringMalaysia University of PerlisKangarMalaysia
  3. 3.Council of Scientific and Industrial Research, National Physical Laboratory Dr. K S Krishnan MargNew DelhiIndia

Personalised recommendations