Journal of Materials Science

, Volume 48, Issue 2, pp 612–624

Zinc oxide nanostructures: from growth to application

Review

Abstract

Zinc oxide’s (ZnO) physical and chemical properties make it a viable and extremely attractive compound to use in a variety of nanotechnology applications. Some of these applications include biomedical, energy, sensors, and optics. As the research in ZnO nanostructures continue to grow, it has inspired a whole host of new innovative applications. Complementing its unique chemical qualities, it also has a simple crystal-growth technology and offers significantly lower fabrication costs when compared to other semiconductors used in nanotechnology. Several processes have been developed in order to synthesize high quality ZnO nanostructures—specifically in the case of nanowires. Here we offer a comprehensive review on the growth methods currently employed in research, industry, and academia to understand what protocols are available to meet specific needs in nanotechnology. Methods examined include: the vapor–liquid–solid, physical vapor deposition, chemical vapor deposition, metal–organic chemical vapor deposition, and the hydrothermal-based chemical approach. Each of these methods is discussed and their strengths and weaknesses are analyzed with objective comparison metrics. In addition, we study the current state-of-the-art applications employing ZnO nanostructures at their core. A historical perspective on the evolution of the field and the accompanying literature are also presented.

References

  1. 1.
    Brubaker DG, Fuller ML (1945) J Appl Phys 16:128CrossRefGoogle Scholar
  2. 2.
    Klingshirn C, Hauschild R, Priller H, Zeller J, Decker M, Kalt H (2006) Adv Spectrosc Lasers Sens 231:277CrossRefGoogle Scholar
  3. 3.
    Leung V, Ko F (2011) Polym Adv Technol 22:350CrossRefGoogle Scholar
  4. 4.
    Nambiar S, Yeow JTW (2011) Biosens Bioelectron 26:1825CrossRefGoogle Scholar
  5. 5.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Modern Phys 81:109CrossRefGoogle Scholar
  6. 6.
    Chen XM, Wu GH, Jiang YQ, Wang YR, Chen X (2011) Analyst 136:4631CrossRefGoogle Scholar
  7. 7.
    Artiles MS, Rout CS, Fisher TS (2011) Adv Drug Deliv Rev 63:1352CrossRefGoogle Scholar
  8. 8.
    Geim AK (2011) Rev Mod Phys 83:851CrossRefGoogle Scholar
  9. 9.
    Cao BQ, Teng XM, Heo SH, Li Y, Cho SO, Li GH, Cai WP (2007) J Phys Chem C 111:2470CrossRefGoogle Scholar
  10. 10.
    Fryar J, McGlynn E, Henry MO, Cafolla AA, Hanson CJ (2004) Nanotechnology 15:1797CrossRefGoogle Scholar
  11. 11.
    Shen GZ, Chen D, Lee CJ (2006) J Phys Chem B 110:15689CrossRefGoogle Scholar
  12. 12.
    Calestani D, Zha MZ, Zanotti L, Villani M, Zappettini A (2011) CrystEngComm 13:1707CrossRefGoogle Scholar
  13. 13.
    Hsu YK, Lin YG, Chen YC (2011) Electrochem Commun 13:1383CrossRefGoogle Scholar
  14. 14.
    Zhang P, Xu F, Navrotsky A, Lee JS, Kim ST, Liu J (2007) Chem Mater 19:5687CrossRefGoogle Scholar
  15. 15.
    Liu WC, Cai W (2008) J Cryst Growth 310:843CrossRefGoogle Scholar
  16. 16.
    Jimenez-Cadena G, Comini E, Ferroni M, Vomiero A, Sberveglieri G (2010) Mater Chem Phys 124:694CrossRefGoogle Scholar
  17. 17.
    Wang J, Zhuang HZ, Li JL, Xu P (2011) Appl Surf Sci 257:2097CrossRefGoogle Scholar
  18. 18.
    Ahmad M, Zhu J (2011) J Mater Chem 21:599CrossRefGoogle Scholar
  19. 19.
    Wang ZL, Gao PX (2004) J Phys Chem B 108:7534CrossRefGoogle Scholar
  20. 20.
    Gomez JL, Tigli O (2011) In: IEEE NMDC, JejuGoogle Scholar
  21. 21.
    Carcia PF, McLean RS, Reilly MH, Crawford MK, Blanchard EN, Kattamis AZ, Wagner S (2007) J Appl Phys 102: 074512Google Scholar
  22. 22.
    Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) J Appl Phys 98: 041301Google Scholar
  23. 23.
    Klingshirn C, Fallert J, Zhou H, Sartor J, Thiele C, Maier-Flaig F, Schneider D, Kalt H (2010) Phys Status Solid B-Basic Solid State Phys 247:1424CrossRefGoogle Scholar
  24. 24.
    Hsueh TJ, Hsu CL, Chang SJ, Lin YR, Lin TS, Chen IC (2007) J Electrochem Soc 154:H153CrossRefGoogle Scholar
  25. 25.
    Hahn YB (2011) Korean J Chem Eng 28:1797CrossRefGoogle Scholar
  26. 26.
    Wagner RS, Ellis WC (1964) Appl Phys Lett 4:89CrossRefGoogle Scholar
  27. 27.
    Tigli O, Juhala J (2011) In: IEEE Nanotechnology, PortlandGoogle Scholar
  28. 28.
    Hsu HC, Cheng CS, Chang CC, Yang S, Chang CS, Hsieh WF (2005) Nanotechnology 16:297CrossRefGoogle Scholar
  29. 29.
    Snyder RL, Kirkham M, Wang XD, Wang ZL (2007) Nanotechnology 18: 365304Google Scholar
  30. 30.
    Chen IC, Hsueh TJ, Hsu CL, Chang SJ (2007) Sensors Actuators B-Chem 126:473CrossRefGoogle Scholar
  31. 31.
    Yang PD, Huang MH, Wu YY, Feick H, Tran N, Weber E (2001) Adv Mater 13:113CrossRefGoogle Scholar
  32. 32.
    Lu JG, Chang PC, Fan ZY, Wang DW, Tseng WY, Chiou WA, Hong J (2004) Chem Mater 16:5133CrossRefGoogle Scholar
  33. 33.
    Wang N, Cai Y, Zhang RQ (2008) Mater Sci Eng R-Rep 60:1CrossRefGoogle Scholar
  34. 34.
    Sallet V, Agouram S, Falyouni F, Marzouki A, Haneche N, Sartel C, Lusson A, Enouz-Vedrenne S, Munoz-Sanjose V, Galtier P (2010) Phys Status Solidi B-Basic Solid State Phys 247:1683CrossRefGoogle Scholar
  35. 35.
    Hornyak GL (2009) Fundamentals of nanotechnology. CRC Press, Boca RatonGoogle Scholar
  36. 36.
    Yu DP, Zhang Y, Jia HB, Wang RM, Chen CP, Luo XH, Lee CJ (2003) Appl Phys Lett 83:4631CrossRefGoogle Scholar
  37. 37.
    Zhang X, Wang LS, Zhou GY (2005) Rev Adv Mater Sci 10:69Google Scholar
  38. 38.
    Zhang XZ, Wang LS, Zhao SQ, Zhou GY, Zhou YL, Qi JJ (2005) Appl Phys Lett 86:231903CrossRefGoogle Scholar
  39. 39.
    Zhao DX, Fang F, Zhang JY, Shen DZ, Lu YM, Fan XW, Li BH, Wang XH (2008) Mater Lett 62:1092CrossRefGoogle Scholar
  40. 40.
    Zhang J, Wang X, Li QQ, Liu ZB, Liu ZF, Wang RM (2004) Appl Phys Lett 84:4941CrossRefGoogle Scholar
  41. 41.
    Gomez JL, Senveli SU, Tigli O (2012) In: Miami 2012 winter symposium: nanotechnology in biomedicine, Miami, p P18Google Scholar
  42. 42.
    Kumar MS, Kim TY, Kim JY, Suh EK, Nahm KS (2004) In: Proceedings of 5th international symposium on blue laser and light emitting diodes, p 2554Google Scholar
  43. 43.
    Park JH, Bae SY, Seo HW (2004) J Phys Chem B 108:5206CrossRefGoogle Scholar
  44. 44.
    Myoung JM, Lee W, Jeong MC (2004) Acta Mater 52:3949CrossRefGoogle Scholar
  45. 45.
    Lee WN, Jeong MC, Myoung JM (2004) Nanotechnology 15:254CrossRefGoogle Scholar
  46. 46.
    Wang ZL, Wang XD, Song JH, Li P, Ryou JH, Dupuis RD, Summers CJ (2005) J Am Chem Soc 127:7920CrossRefGoogle Scholar
  47. 47.
    Yang PD, Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G (2005) Nano Lett 5:1231CrossRefGoogle Scholar
  48. 48.
    Yan CH, Zhang J, Sun LD, Pan HY, Liao CS (2002) New J Chem 26:33CrossRefGoogle Scholar
  49. 49.
    Bai SN, Tsai HH, Tseng TY (2007) Thin Solid Films 516:155CrossRefGoogle Scholar
  50. 50.
    Gleiter H (2000) Acta Mater 48:1CrossRefGoogle Scholar
  51. 51.
    Pokropivny VV, Skorokhod VV (2007) Mater Sci Eng C-Biomimetic Supramol Syst 27:990CrossRefGoogle Scholar
  52. 52.
    Kustov E, Nefedov V (2008) Russ J Inorg Chem 53:2103CrossRefGoogle Scholar
  53. 53.
    Kustov EF, Nefedov VI (2007) Dokl Phys Chem 414:150CrossRefGoogle Scholar
  54. 54.
    Fan ZY, Lu JG (2005) J Nanosci Nanotechnol 5:1561CrossRefGoogle Scholar
  55. 55.
    Tian Y, Lu HB, Wu Y, Li JC (2010) Mater Sci Technol 26:1248CrossRefGoogle Scholar
  56. 56.
    Sears GW (1955) Acta Metall 3:367CrossRefGoogle Scholar
  57. 57.
    Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947CrossRefGoogle Scholar
  58. 58.
    Yang PD, Lieber CM (1997) J Mater Res 12:2981CrossRefGoogle Scholar
  59. 59.
    Wang ZL (2007) Appl Phys A-Mater Sci Proc 88:7CrossRefGoogle Scholar
  60. 60.
    Djurisic AB, Ng AMC, Chen XY (2010) Prog Quantum Electron 34:191CrossRefGoogle Scholar
  61. 61.
    Gao PX, Wang ZL (2004) Appl Phys Lett 84:2883CrossRefGoogle Scholar
  62. 62.
    Gao PX, Wang ZL (2003) J Am Chem Soc 125:11299CrossRefGoogle Scholar
  63. 63.
    Wang JX, Sun XW, Wei A, Lei Y, Cai XP, Li CM, Dong ZL (2006) Appl Phys Lett 88: 233106Google Scholar
  64. 64.
    Umar A, Rahman MM, Al-Hajry A, Hahn YB (2009) Talanta 78:284CrossRefGoogle Scholar
  65. 65.
    Xiong HM, Liu DP, Xia YY, Chen JS (2005) Chem Mater 17:3062CrossRefGoogle Scholar
  66. 66.
    Xiong HM, Wang ZD, Xia YY (2006) Adv Mater 18:748+CrossRefGoogle Scholar
  67. 67.
    Xiong HM, Xu Y, Ren OG, Xia YY (2008) J Am Chem Soc 130:7522+CrossRefGoogle Scholar
  68. 68.
    Wang XD, Summers CJ, Wang ZL (2004) Nano Lett 4:423CrossRefGoogle Scholar
  69. 69.
    Hosono H (2004) Int J Appl Ceram Technol 1:106CrossRefGoogle Scholar
  70. 70.
    Hosono H (2004) In: Critical interfacial issues in thin-film optoelectronic and energy conversion devices, vol. 796. MRS proceedings, p. 87Google Scholar
  71. 71.
    Kim KK, Lee SD, Kim H, Park JC, Lee SN, Park Y, Park SJ, Kim SW (2009) Appl Phys Lett 94:071118CrossRefGoogle Scholar
  72. 72.
    Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Science 292:1897CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Electrical and Computer EngineeringUniversity of MiamiCoral GablesUSA
  2. 2.Department of Pathology, Miller School of MedicineUniversity of MiamiCoral GablesUSA
  3. 3.Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute at University of MiamiCoral GablesUSA

Personalised recommendations