Journal of Materials Science

, Volume 48, Issue 4, pp 1711–1716 | Cite as

High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices

  • Nathan Behm
  • Dylan Brokaw
  • Colton Overson
  • Derek Peloquin
  • Jordan C. Poler


In order to produce economically viable supercapacitor devices for electrical energy storage, low cost, and high throughput methods must be developed. We developed a microwave based synthesis for the formation of β-Ni(OH)2 for the formation of nickel oxide nanoplates. These nanoplates have shown excellent properties as pseudocapacitive devices with high-specific capacitance. Novel to this article is the use of a microwave reactor which enables a growth process of only 10 min in duration as compared to previous reports requiring a 24 h period. The resulting NiO nanoplates were fully characterized by electron microscopy, electron diffraction, energy dispersive X-ray spectroscopy, UV–Vis spectroscopy, thermo gravimetric analysis, and surface area and porosity measurements. Nanoplates formed using the microwave reactor is similar to those formed by hydrothermal processes. NiO-single walled carbon nanotube composites were made without any binder and the specific capacitance was measured using charge discharge techniques.

Supplementary material

10853_2012_6929_MOESM1_ESM.docx (5 mb)
Supplementary material 1 (DOCX 5105 kb)


  1. 1.
    Sherrill SA, Banerjee P, Rubloff GW, Lee SB (2011) PCCP Phys Chem Chem Phys 13(46):20714. doi:10.1039/c1cp22659b CrossRefGoogle Scholar
  2. 2.
    Wang GP, Zhang L, Zhang JJ (2012) Chem Soc Rev 41(2):797. doi:10.1039/c1cs15060j CrossRefGoogle Scholar
  3. 3.
    Conway BE (1999) Electrochemical supercapacitors. Kluwer Academic Plenum Press, New YorkGoogle Scholar
  4. 4.
    Nam KW, Kim KB (2002) J Electrochem Soc 149(3):A346. doi:10.1149/1.1449951 CrossRefGoogle Scholar
  5. 5.
    Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) J Phys Chem B 109(43):20207. doi:10.1021/jp0543330 CrossRefGoogle Scholar
  6. 6.
    Subramanian V, Zhu HW, Wei BQ (2006) J Power Sources 159(1):361. doi:10.1016/j.jpowsour.2006.04.012 CrossRefGoogle Scholar
  7. 7.
    Zhang J, Ma J, Zhang LL, Guo P, Jiang J, Zhao XS (2010) J Phys Chem C 114(32):13608. doi:10.1021/jp105146c CrossRefGoogle Scholar
  8. 8.
    Chen Z, Augustyn V, Wen J, Zhang Y, Shen M, Dunn B, Lu Y (2011) Adv Mater 23(6):791. doi:10.1002/adma.201003658 CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Gui Y, Wu X, Feng H, Zhang A, Wang L, Xia T (2009) Int J Hydrogen Energy 34(5):2467. doi:10.1016/j.ijhydene.2008.12.078 CrossRefGoogle Scholar
  10. 10.
    Dallinger D, Kappe CO (2007) Chem Rev 107(6):2563. doi:10.1021/cr0509410 CrossRefGoogle Scholar
  11. 11.
    Roberts BA, Strauss CR (2005) Acc Chem Res 38(8):653. doi:10.1021/ar040278m CrossRefGoogle Scholar
  12. 12.
    Abdelsayed V, Aljarash A, El-Shall MS, Al Othman ZA, Alghamdi AH (2009) Chem Mater 21(13):2825. doi:10.1021/cm9004486 CrossRefGoogle Scholar
  13. 13.
    Glaspell G, Fuoco L, El-Shall MS (2005) J Phys Chem B 109(37):17350. doi:10.1021/jp0526849 CrossRefGoogle Scholar
  14. 14.
    Glaspell G, Hassan EA, Fuoco L, Radwan NRE, El-Shall MS (2006) J Phys Chem B 110(43):21387. doi:10.1021/jp0651034 CrossRefGoogle Scholar
  15. 15.
    Herring NP, AbouZeid K, Mohamed MB, Pinsk J, El-Shall MS (2011) Langmuir 27(24):15146. doi:10.1021/la201698k CrossRefGoogle Scholar
  16. 16.
    Wang Y, Xing S, Zhang E, Wei J, Suo H, Zhao C, Zhao X (2012) J Mater Sci 47(5):2182. doi:10.1007/s10853-011-6021-7 CrossRefGoogle Scholar
  17. 17.
    Huang XH, Tu JP, Zhang CQ, Xiang JY (2007) Electrochem Commun 9(5):1180. doi:10.1016/j.elecom.2007.01.014 CrossRefGoogle Scholar
  18. 18.
    Meher SK, Justin P, Rao GR (2011) ACS Appl Mater Interfaces 3(6):2063. doi:10.1021/am200294k CrossRefGoogle Scholar
  19. 19.
    Parada C, Morán E (2006) Chem Mater 18(11):2719. doi:10.1021/cm0511365 CrossRefGoogle Scholar
  20. 20.
    Zhu ZF, Zhang YL, Liu H, Wei N (2012) Superlattices Microstruct 51(2):232. doi:10.1016/j.spmi.2011.11.014 CrossRefGoogle Scholar
  21. 21.
    Qi Y, Qi H, Li J, Lu C (2008) J Cryst Growth 310(18):4221. doi:10.1016/j.jcrysgro.2008.06.047 CrossRefGoogle Scholar
  22. 22.
    Zhu ZH, Ping J, Huang XP, Hu JG, Chen QY, Ji XB, Banks CE (2012) J Mater Sci 47(1):503. doi:10.1007/s10853-011-5826-8 CrossRefGoogle Scholar
  23. 23.
    Fievet F, Germi P, de Bergevin F, Figlarz M (1979) J Appl Crystallogr 12(4):387. doi:10.1107/S0021889879012747 CrossRefGoogle Scholar
  24. 24.
    Farzaneh F, Mehraban Z, Norouzi F (2010) Environ Chem Lett 8(1):69. doi:10.1007/s10311-008-0193-7 CrossRefGoogle Scholar
  25. 25.
    Johnston HL, Marshall AL (1940) J Am Chem Soc 62(6):1382. doi:10.1021/ja01863a015 CrossRefGoogle Scholar
  26. 26.
    Ivanov E (2008) Prot Met 44(4):386. doi:10.1134/s0033173208040139 CrossRefGoogle Scholar
  27. 27.
    Zhang XJ, Shi WH, Zhu JX, Kharistal DJ, Zhao WY, Lalia BS, Hng HH, Yan QY (2011) ACS Nano 5(3):2013. doi:10.1021/nn1030719 CrossRefGoogle Scholar
  28. 28.
    Wang X, Han XD, Lim M, Singh N, Gan CL, Jan M, Lee PS (2012) J Phys Chem C 116(23):12448. doi:10.1021/jp3028353 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Nathan Behm
    • 1
  • Dylan Brokaw
    • 1
  • Colton Overson
    • 1
  • Derek Peloquin
    • 1
  • Jordan C. Poler
    • 1
  1. 1.Department of ChemistryUniversity of North Carolina at CharlotteCharlotteUSA

Personalised recommendations