Journal of Materials Science

, Volume 48, Issue 4, pp 1632–1639

Microstructures, mechanical properties and in vitro corrosion behaviour of biodegradable Mg–Zr–Ca alloys

Article

Abstract

The microstructures, mechanical properties, corrosion behaviour and biocompatibility of the Mg–Zr–Ca alloys have been investigated for potential use in orthopaedic applications. The microstructures of the alloys were examined using X-ray diffraction analysis, optical microscopy and scanning electron microscopy. The mechanical properties of Mg–Zr–Ca alloys were determined from compressive tests. The corrosion behaviour has been investigated using an immersion test and electrochemical measurement. The biocompatibility was evaluated by cell growth factor using osteoblast-like SaOS2 cell. The experimental results indicate that the hot-rolled Mg–Zr–Ca alloys exhibit much finer microstructures than the as-cast Mg–Zr–Ca alloys which show coarse microstructures. The compressive strength of the hot-rolled alloys is much higher than that of the as-cast alloys and the human bone, which would offer appropriate mechanical properties for orthopaedic applications. The corrosion resistance of the alloys can be enhanced significantly by hot-rolling process. Hot-rolled Mg–0.5Zr–1Ca alloy (wt %) exhibits the lowest corrosion rate among all alloys studied in this paper. The hot-rolled Mg–0.5Zr–1Ca and Mg–1Zr–1Ca alloys exhibit better biocompatibility than other studied alloys and possess advanced mechanical properties, corrosion resistance and biocompatibility, suggesting that they have a great potential to be good candidates for orthopaedic applications.

References

  1. 1.
    Long M, Rack HJ (1998) Biomaterials 19:1621CrossRefGoogle Scholar
  2. 2.
    Witte F, Fischer J, Nellesen J, Crostack H-A, Kaese V, Pisch A et al (2006) Biomaterials 27:1013CrossRefGoogle Scholar
  3. 3.
    Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Biomaterials 27:1728CrossRefGoogle Scholar
  4. 4.
    Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ et al (2005) Biomaterials 26:3557CrossRefGoogle Scholar
  5. 5.
    Song G (2007) Corr Sci 49:1696CrossRefGoogle Scholar
  6. 6.
    Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, Tao H, Zhang Y, He Y, Jiang Y, Bian Y (2010) Acta Biomater 6:626CrossRefGoogle Scholar
  7. 7.
    Zhang E, Yin D, Xu L, Yang L, Yang K (2009) Mater Sci Eng C 29:987CrossRefGoogle Scholar
  8. 8.
    Zhang E, Yang L (2008) Mater Sci Eng A 497:111CrossRefGoogle Scholar
  9. 9.
    Zhang E, He W, Dui H, Yang K (2008) Mater Sci Eng A 488:1021Google Scholar
  10. 10.
    Zhang E, Yang L, Xu J, Chen H (2010) Acta Biomater 6:1756CrossRefGoogle Scholar
  11. 11.
    Li Z, Gu X, Lou S, Zheng Y (2008) Biomaterials 29:1329CrossRefGoogle Scholar
  12. 12.
    Wan Y, Xiong G, Luo H, He F, Huang Y, Zhou X (2008) Mater Des 29:2034CrossRefGoogle Scholar
  13. 13.
    Gu X, Zheng Y, Cheng Y, Zhong S, Xi T (2009) Biomaterials 30:484CrossRefGoogle Scholar
  14. 14.
    Xu H, Liu JA, Xie SS (2007) Magnesium alloys fabrication and processing technology China. Metallurgical Industry Press, BeijingGoogle Scholar
  15. 15.
    Ye XY, Chen MF, Yang M, Wei J, Liu DB (2010) J Mater Sci Mater Med 21:1321CrossRefGoogle Scholar
  16. 16.
    Tsai MH, Chen MS, Lin LH, Lin MH, Wu CZ, Ou KL, Yu CH (2011) J Alloys Compd 21:813CrossRefGoogle Scholar
  17. 17.
    Li Y, Hodgson P, Wen C (2011) J Mater Sci 46:365. doi:10.1007/s10853-010-4843-3 CrossRefGoogle Scholar
  18. 18.
    Rodan SB, Imai Y, Thiede MA, Wesolowski G, Thompson D, Bar-Shavit Z et al (1987) Cancer Res 47:496Google Scholar
  19. 19.
    Li Y, Wong C, Xiong J, Hodgson P, Wen C (2010) J Dent Res 89:493CrossRefGoogle Scholar
  20. 20.
    International organization for Standardization (1999) Biological evaluation of medical devices. ISO10993-5. ANSI/AAMI, ArlingtonGoogle Scholar
  21. 21.
    ASM International (1992) ASM handbook 03: alloy phase diagrams. ASM International, Materials Park, OHGoogle Scholar
  22. 22.
    Zhou Y-L, Luo D-M (2011) Mater Character 62:931CrossRefGoogle Scholar
  23. 23.
    Matsumoto H, Watanabe S, Hanada S (2007) J Alloys Compd 439:146CrossRefGoogle Scholar
  24. 24.
    Collings EW (1984) The physical metallurgy of titanium alloys. ASM International, Metals Park, OHGoogle Scholar
  25. 25.
    Cui ZX (2000) Metallography and heat treatments. Mechanical Industry Press, BeijingGoogle Scholar
  26. 26.
    ASM International Handbook Committee (1987) ASM handbook. Corrosion, vol 13. ASM International, Materials Park, OHGoogle Scholar
  27. 27.
    Davis JR (2000) Corrosion understanding the basics. ASM International, Materials Park, OHGoogle Scholar
  28. 28.
    Laque FL, Copson HR (1963) Corrosion resistance of metals and alloys. Reinhold Publishing Corporation, New YorkGoogle Scholar
  29. 29.
    Shreir LL (1963) Corrosion, vol. 1: corrosion of metals and alloys. George Newnes Ltd, LondonGoogle Scholar
  30. 30.
    Zhang X, Yuan G, Mao L, Niu J, Fu P, Ding W (2012) J Mech Behav Biomed Mater 7:77CrossRefGoogle Scholar
  31. 31.
    Alvarez-Lopez M, Pereda MD, Del Valle JA, Fernandez-Lorenzo M, Garcia-Alonso MC, Ruano OA et al (2010) Acta Biomater 6:1763CrossRefGoogle Scholar
  32. 32.
    Hamu GB, Eliezer D, Wagner L (2009) J Alloy Compd 468:222CrossRefGoogle Scholar
  33. 33.
    Liu C, Xin Y, Tang G, Chu PK (2007) Mater Sci Eng A 456:350CrossRefGoogle Scholar
  34. 34.
    Witte F (2010) Acta Biomater 6:1680CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Mechatronics EngineeringFoshan UniversityFoshanChina
  2. 2.Institute for Frontier MaterialsDeakin UniversityWaurn PondsAustralia
  3. 3.Faculty of Engineering and Industrial SciencesSwinburne University of TechnologyHawthornAustralia

Personalised recommendations