Journal of Materials Science

, Volume 48, Issue 4, pp 1623–1631 | Cite as

Conceptional design of nano-particulate ITO inks for inkjet printing of electron devices

  • Nadja Kölpin
  • Moritz Wegener
  • Erik Teuber
  • Sebastian Polster
  • Lothar Frey
  • Andreas Roosen


This manuscript presents the conceptional design of indium tin oxide inkjet inks for the manufacture of electron devices. For this purpose, the process window of the printer used is identified and the inks are conceived to meet the requirements. The nano-particles are effectively stabilized in different dispersion media. The rheological, the wetting and the drying behavior of the inks are adapted to the inkjet process and the substrates to be coated. To assemble a field effect transistor (FET), the most suitable ink is chosen and source and drain contacts are printed. In the device, a nano-particulate ZnO layer acts as semiconducting layer and the gate electrode as well as the dielectric layer is formed by a thermally oxidized silicon wafer. The electron device assembled shows the typical FET characteristic proving its functionality.


Contact Angle Field Effect Transistor Agglomerate Size Loss Angle High Solid Loading 



The financial support of the German Research Foundation (DFG, Graduiertenkolleg1161) as well as the support of our industrial partner Evonik Industries AG, Germany, is gratefully acknowledged.


  1. 1.
    Calvert P (2001) Chem Mater 13(10):3299CrossRefGoogle Scholar
  2. 2.
    Hoffmann RC, Dilfer S, Schneider JJ (2011) Phys Status Solidi A 208:2920CrossRefGoogle Scholar
  3. 3.
    Zhang XH, Lee SM, Domercq B, Kippelen B (2008) Appl Phys Lett 92:2433071Google Scholar
  4. 4.
    Le HP (1998) J Imaging Sci Technol 42(1):49Google Scholar
  5. 5.
    Lejeune M, Chartier T, C. Dossou-Yovo C, Noguera R (2009) J Eur Ceram Soc 29(5):905CrossRefGoogle Scholar
  6. 6.
    Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Adv Mater 22(6):673CrossRefGoogle Scholar
  7. 7.
    Caironi M, Gili E, Sakanoue T, Cheng X, Sirringhaus H (2010) ACS Nano 4(3):1451CrossRefGoogle Scholar
  8. 8.
    Hwang MS, Jeong BY, Moon J, Chun SK, Kim J (2011) Mater Sci Eng, B 176(14):1128CrossRefGoogle Scholar
  9. 9.
    Fromm JE (1984) IBM J Res Dev 28(3):322CrossRefGoogle Scholar
  10. 10.
    Derby B, Reis N (2003) MRS Bull 28(11):815CrossRefGoogle Scholar
  11. 11.
    Jang D, Kim D, Moon J (2009) Langmuir 25(5):2629CrossRefGoogle Scholar
  12. 12.
    Derby B (2010) Annu Rev Mater Res 40:395CrossRefGoogle Scholar
  13. 13.
    Schiaffino S, Sonin AA (1997) J Fluid Mech 343:95CrossRefGoogle Scholar
  14. 14.
    Duineveld PC (2003) J Fluid Mech 477:175CrossRefGoogle Scholar
  15. 15.
    Stringer J, Derby B (2010) Langmuir 26(12):10365CrossRefGoogle Scholar
  16. 16.
    Straue N, Rauscher M, Walther S, Faber H, Roosen A (2009) J Mater Sci 44(22):6011. doi: 10.1007/s10853-009-3804-1 CrossRefGoogle Scholar
  17. 17.
    Reindl A, Mahajeri M, Hanft J, Peukert W (2009) Thin Solid Film 517:1624CrossRefGoogle Scholar
  18. 18.
    Mahajeri M, Voigt M, Klupp Taylor RN, Reindl A, Peukert W (2010) Thin Solid Films 518:3373CrossRefGoogle Scholar
  19. 19.
    Walther S, Schäfer S, Jank MPM, Thiem H, Peukert W, Frey L, Ryssel H (2010) Microelectron Eng 87(11):2312CrossRefGoogle Scholar
  20. 20.
    Reindl A (2009) PhD thesis, Department of Chemical and Biological Engineering, University of Erlangen-NurembergGoogle Scholar
  21. 21.
    Renger C, Kuschel P, Kristoffersson A, Clauss B, Oppermann W, Sigmund W (2004) Phys Chem Chem Phys 6(7):1467CrossRefGoogle Scholar
  22. 22.
    Finke T, Lingenfelser D, Bindler K, Eisele U, Bockhorn H, Brunklaus G (2009) J Am Ceram Soc 92(8):1823CrossRefGoogle Scholar
  23. 23.
    Bergström L (1994) In: Pugh R (ed) Bergström L (ed), Dekker M (ed) Surfactant science series, vol 51. Surfactant and colloid chemistry in advanced ceramics processing, New YorkGoogle Scholar
  24. 24.
    Renger C, Kuschel P, Kristoffersson A, Clauss B, Oppermann W, Sigmund W (2007) J Eur Ceram Soc 27(6):2361CrossRefGoogle Scholar
  25. 25.
    Printer FAQs-Dimatix (2011) FUJIFILM Dimatix Inc., Santa Clara, CA, USA. Accessed 01 June 2011
  26. 26.
    Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Nature 389:827CrossRefGoogle Scholar
  27. 27.
    Hoffman RL, Norris BJ, Wager JF (2003) Appl Phys Lett 82:733CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Nadja Kölpin
    • 1
  • Moritz Wegener
    • 1
  • Erik Teuber
    • 2
  • Sebastian Polster
    • 3
  • Lothar Frey
    • 3
  • Andreas Roosen
    • 1
  1. 1.Department of Materials Science, Glass and CeramicsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Fraunhofer Institute for Integrated Systems and Device TechnologyErlangenGermany
  3. 3.Department of Electrical, Electronic and Communication EngineeringUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations