Journal of Materials Science

, Volume 48, Issue 3, pp 1342–1350 | Cite as

X-ray photoelectron spectrum, X-ray diffraction data, and electronic structure of chalcogenide quaternary sulfide Ag2In2GeS6: experiment and theory

  • A. H. Reshak
  • I. V. Kityk
  • O. V. Parasyuk
  • A. O. Fedorchuk
  • Z. A. Alahmed
  • N. AlZayed
  • H. Kamarudin
  • S. Auluck


We report measurements of the X-ray diffraction and X-ray photoelectron spectrum on single crystals of Ag2In2GeS6. We also present first principles calculations of the band structure and density of states using the state-of-the-art full potential augmented plane wave method with different possible approximation for the exchange correlation potential. In this paper, we make a detailed comparison of the density of states deduced from the X-ray photoelectron spectra with our calculations. The theoretical results of the density of states are in reasonable agreement with the X-ray photoelectron spectroscopy (VB-XPS) measurements with respect to peak positions. The calculated density of states shows there is a strong hybridization between the states in the valence and conduction bands states. We have calculated the electron charge density distribution in the (100) and (110) planes. In the plane (100), there exists Ag, In, and S atoms, while the plane (110) Ag, S, and Ge atoms are present. The bonding properties are obtained from the charge density distributions. The calculation show that there is partial ionic and strong covalent bonding between Ag–S, In–S, and Ge–S atoms depending on Pauling electro-negativity difference of S (2.58), Ge (2.01), Ag (1.93), and In (31.78) atoms.


Local Density Approximation Conduction Band Minimum Full Potential Linearize Augmented Plane Wave Exchange Correlation Potential Augmented Plane Wave Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported from the institutional research concept of the project CENAKVA (No. CZ.1.05/2.1.00/01.0024), the Grant No. 152/2010/Z of the Grant Agency of the University of South Bohemia. School of Material Engineering, Malaysia University of Perlis, Malaysia. SA would like to thank NPL for the J C Bose Fellowship. For I.Kityk, his work was supported by Polish National Science Centre (under Project No. 2011/01/B/ST7/06194).


  1. 1.
    Lekse W, Moreau MA, McNerny KL, Yeon J, Halasyamani PS, Aitken JA (2009) Inorg Chem 48:7516CrossRefGoogle Scholar
  2. 2.
    Lekse JW, Leverett BM, Lake CH, Aitken JA (2008) J Solid State Chem 181Google Scholar
  3. 3.
    Matsushita H, Katsui A (2005) J Phys Chem Solids 66:1933CrossRefGoogle Scholar
  4. 4.
    Todorov TK, Reuter KB, Mitzi DB (2010) Adv Mater 22:E156CrossRefGoogle Scholar
  5. 5.
    Zhou Z, Wang Y, Xu D, Zhang Y (2010) Sol Energy Mater Sol Cells 94:2042CrossRefGoogle Scholar
  6. 6.
    Davydyuk GE, Myronchuk GL, Kityk IV, Danyl’chuk SP, Bozhko VV, Parasyuk OV (2011) Opt Mater 33:1302CrossRefGoogle Scholar
  7. 7.
    Parasyuk OV, Piskach LV, Romanyuk YE, Olekseyuk ID, Zaremba VI, Pekhnyo VI (2005) J Alloys Compd 397:85CrossRefGoogle Scholar
  8. 8.
    Fedorchuk AO, Gorgut GP, Parasyuk OV, Lakshminarayana G, Kityk IV, Piasecki M (2011) J Phys Chem Solids 72:1354CrossRefGoogle Scholar
  9. 9.
    Sachanyuk VP, Gorgut GP, Atuchin VV, Olekseyuk ID, Parasyuk OV (2008) J Alloys Compd 452:348CrossRefGoogle Scholar
  10. 10.
    Chmiel M, Piasecki M, Myronchuk G, Lakshminarayana G, Reshak Ali H, Parasyuk OG, Kogut Yu, Kityk IV (2012) Spectrochim Acta A 91:48CrossRefGoogle Scholar
  11. 11.
    Dovgii Ya O, Kityk IV (1991) Phys Stat Sol B 166:395CrossRefGoogle Scholar
  12. 12.
    Dovgii YO, Kityk IV (1991) Soviet Phys Semicond-USSR 25(10):1108Google Scholar
  13. 13.
    Dovgii YO, Kityk IV (1991) Kristallograiya 36(3):772Google Scholar
  14. 14.
    Dovgii YO, Kityk IV, Mankovskaya IG (1990) Fizika Tverdogo Tela 32(10):3170Google Scholar
  15. 15.
    Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2K, an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz, Techn. Universitat, Wien, ISBN 3-9501031-1-2Google Scholar
  16. 16.
    Ceperley DM, Ader BI (1980) Phys Rev Lett 45:566–569; parametrized in Perdew J P, Zunger A Phys Rev B 8:4822–4832Google Scholar
  17. 17.
    Ceperley DM, Ader BI (1980) Phys Rev Lett 45:566CrossRefGoogle Scholar
  18. 18.
    Perdew JP, Burke S, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  19. 19.
    Engel E, Vosko SH (1993) Phys Rev B 47:13164CrossRefGoogle Scholar
  20. 20.
    Tran F, Blaha P (2009) Phys Rev Lett 102:226401CrossRefGoogle Scholar
  21. 21.
    Reshak AH, Stys D, Auluck S, Kamarudin H (2011) Mater Chem Phys 130:458CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. H. Reshak
    • 1
    • 2
  • I. V. Kityk
    • 3
    • 4
    • 5
  • O. V. Parasyuk
    • 5
  • A. O. Fedorchuk
    • 6
  • Z. A. Alahmed
    • 4
  • N. AlZayed
    • 4
  • H. Kamarudin
    • 2
  • S. Auluck
    • 7
  1. 1.School of Complex Systems, FFPW, CENAKVAUniversity of South Bohemia in CBNove HradyCzech Republic
  2. 2.School of Material EngineeringMalaysia University of PerlisKangarMalaysia
  3. 3.Electrical Engineering DepartmentCzestochowa University of TechnologyCzestochowaPoland
  4. 4.Department of Physics and AstronomyKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Chemical DepartmentVolyn State UniversityLutskUkraine
  6. 6.Department of Inorganic and Organic ChemistryLviv National University of Veterinary Medicine and BiotechnologiesLvivUkraine
  7. 7.National Physical LaboratoryNew DelhiIndia

Personalised recommendations