Journal of Materials Science

, Volume 48, Issue 3, pp 1292–1302 | Cite as

The influence of surface microstructure on the scratch characteristics of Kevlar fibers

  • Quinn P. McAllister
  • John W. GillespieJr.
  • Mark R. VanLandingham


In this work, nanoindentation and nanoscratching experiments are combined with atomic force microscopy to investigate the relationships between contact geometry, apparent friction, and deformation modes of two grades of Kevlar® (Dupont) fiber—Kevlar KM2 and Kevlar 49. Changes in the relative angle between the scratching probe and the fiber surface, often termed as the attack angle, result in changes in deformation mode, which correlate with the changes in the apparent friction. As attack angle increases, the observed deformation modes of the fiber surface change from a smoothing of the surface, often termed as ironing, to fibrillation, in which the fibrils break and coalesce in front of the progressing probe. A mixture of these two modes occurs at intermediate attack angles. When fibrillation occurs, material pile-up forms in front of the progressing probe. This pile-up introduces an additional component to the frictional response that is largely responsible for an increase in apparent friction with an increasing attack angle and/or scratch length. The level of friction associated with fibrillation is measured to be up to approximately three times higher than previously reported for Kevlar yarn–yarn friction. Fibrillation of Kevlar KM2 occurs at larger attack angles as compared to Kevlar 49, which is believed to be related to a near-surface region of reduced modulus and hardness previously observed in KM2 fibers. A detailed discussion of the measured response is given based on the interactions between the scratching probe and the fibrillar network and the resulting deformation mechanisms.


  1. 1.
    Nilakantan G, Gillespie JW Jr (2012) Compos Struct. doi:10.1016/j.compstruc.2012.05.030 Google Scholar
  2. 2.
    Nilakantan G, Wetzel ED, Bogetti TA, Gillespie JW Jr (2012) Compos Struct 94:1846CrossRefGoogle Scholar
  3. 3.
    Duan Y, Keefe M, Bogetti TA, Cheeseman BA (2005) Int J Impact Eng 31:996CrossRefGoogle Scholar
  4. 4.
    Kalman DP, Merrill RL, Wagner NJ, Wetzel ED (2009) ACS Appl Mater Interfaces 1:2602CrossRefGoogle Scholar
  5. 5.
    Decker MJ, Egres RG, Wetzel ED, Wagner NJ (2005) In: Flis W, Scott B (eds) 22nd International symposium on ballistics, vol 9. DEStech Publications. Inc, Lancaster, p 777Google Scholar
  6. 6.
    Decker MJ, Halbach CJ, Nam CH, Wagner NJ, Wetzel ED (2007) Compos Sci Technol 67:565CrossRefGoogle Scholar
  7. 7.
    Sawyer LC, Chen RT, Jamieson MG, Musselman IH, Russell PE (1993) J Mater Sci 28:225. doi:10.1007/BF00349055 CrossRefGoogle Scholar
  8. 8.
    Morgan RJ, Pruneda CO, Steele WJ (1983) J Polym Sci B 21:1757Google Scholar
  9. 9.
    Morgan RJ, Allred RE (1989) In: Lee SM (ed) Reference book for composites technology, vol 1. Technomic Publishing Company. Inc, Lancaster, p 143Google Scholar
  10. 10.
    Dobb MG, Johnson DJ, Saville BP (1977) J Polym Sci B 15:2201Google Scholar
  11. 11.
    Panar M, Avakian P, Blume RC, Gardner KH, Gierke TD, Yang HH (1983) J Polym Sci B 21:1955Google Scholar
  12. 12.
    Li SFY, McGhie AJ, Tang SL (1994) J Vac Sci Technol A 12:1891CrossRefGoogle Scholar
  13. 13.
    Riekel C, Garcia Gutiérrez MC, Gourrier A, Roth S (2003) Anal Bioanal Chem 376:594CrossRefGoogle Scholar
  14. 14.
    Riekel C, Davies RJ (2005) Curr Opin Colloid Interface Sci 9:396CrossRefGoogle Scholar
  15. 15.
    Rao Y, Waddon AJ, Farris RJ (2001) Polymer 42:5925CrossRefGoogle Scholar
  16. 16.
    Snetivy D, Vancso GJ, Rutledge GC (1992) Macromolecules 25:7037CrossRefGoogle Scholar
  17. 17.
    Lee KG, Barton R Jr, Schultz JM (1995) J Polym Sci B 33:1CrossRefGoogle Scholar
  18. 18.
    Rebouillat S, Donnet JB, Wang TK (1997) Polymer 38:2245CrossRefGoogle Scholar
  19. 19.
    Rebouillat S, Peng JCM, Donnet JB (1999) Polymer 40:7341CrossRefGoogle Scholar
  20. 20.
    McAllister QP, Gillespie JW Jr, VanLandingham MR (2012) J Mater Res 27:1824CrossRefGoogle Scholar
  21. 21.
    Wen SP, Zong RL, Zeng F, Guo S, Pan F (2009) Appl Surf Sci 255:4558CrossRefGoogle Scholar
  22. 22.
    Bemporad E, Sebastiani M, Staia MH, Cabrera EP (2008) Surf Coat Technol 203:566CrossRefGoogle Scholar
  23. 23.
    Wei G, Bhushan B (2006) Ultramicroscopy 106:742CrossRefGoogle Scholar
  24. 24.
    Sung LP, Drzal PL, VanLandingham MR, Wu TY, Chang SH (2005) J Coat Technol Res 2:583CrossRefGoogle Scholar
  25. 25.
    Jardret V, Lucas BN, Oliver W, Ramamurthy AC (2000) J Coat Technol 72:79CrossRefGoogle Scholar
  26. 26.
    Jardret V, Morel P (2003) Prog Org Coat 48:322CrossRefGoogle Scholar
  27. 27.
    Gauthier C, Schirrer R (2000) J Mater Sci 35:2121. doi:10.1023/A:1004798019914 CrossRefGoogle Scholar
  28. 28.
    Pang X, Yang H, Gao K, Wang Y, Volinsky AA (2011) Thin Solid Films 519:5353CrossRefGoogle Scholar
  29. 29.
    Bhattacharyya AS, Mishra SK (2011) J Micromech Microeng. doi:10.1088/0960-1317/21/1/015011 Google Scholar
  30. 30.
    Roy S, Darque-Ceretti E, Felder E, Raynal F, Bispo I (2010) Thin Solid Films 518:3859CrossRefGoogle Scholar
  31. 31.
    Leyland A, Matthews A (2000) Wear 246:1CrossRefGoogle Scholar
  32. 32.
    Du B, VanLandingham MR, Zhang Q, He T (2001) J Mater Res 16:1487CrossRefGoogle Scholar
  33. 33.
    Bandorf R, Paulkowski DM, Schiffmann KI, Kuster RLA (2008) J Phys Condens Matter. doi:10.1088/0953-8984/20/35/354018 Google Scholar
  34. 34.
    Gauthier C, Lafaye S, Schirrer R (2001) Tribol Int 34:469CrossRefGoogle Scholar
  35. 35.
    Jardret V, Zahouani H, Loubet JL, Mathia TG (1998) Wear 218:8CrossRefGoogle Scholar
  36. 36.
    Kermouche G, Aleksy N, Loubet JL, Bergheau JM (2009) Wear 267:1945CrossRefGoogle Scholar
  37. 37.
    Scheibert J, Prevost A, Debregeas G, Katzav E, Adda-Bedia M (2009) J Mech Phys Solids 57:1921CrossRefGoogle Scholar
  38. 38.
    Hamilton GM, Goodman LE (1966) J Appl Mech 33:371CrossRefGoogle Scholar
  39. 39.
    Briscoe BJ, Pelillo E, Sinha SK (1996) Polym Eng Sci 36:2996CrossRefGoogle Scholar
  40. 40.
    Sedriks AJ, Mulhearn TO (1963) Wear 6:457CrossRefGoogle Scholar
  41. 41.
    Kragelskii IV (1965) Friction and Wear (trans: Ronson L, Lancaster JK). Butterworth Inc., WashingtonGoogle Scholar
  42. 42.
    Briscoe BJ, Evans PD, Pelillo E, Sinha SK (1996) Wear 200:137CrossRefGoogle Scholar
  43. 43.
    Bowden FP, Tabor D (1950) The friction and lubrication of solids. Oxford University Press, LondonGoogle Scholar
  44. 44.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  45. 45.
    McAllister QP, Gillespie JW Jr, VanLandingham MR (2012) J Mater Res 27:197CrossRefGoogle Scholar
  46. 46.
    Briscoe BJ, Motamedi F (1992) Wear 158:229CrossRefGoogle Scholar
  47. 47.
    Rebouillat S (1998) J Mater Sci 33:3293. doi:10.1023/A:1013225027778 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Quinn P. McAllister
    • 1
  • John W. GillespieJr.
    • 1
  • Mark R. VanLandingham
    • 2
  1. 1.Department of Materials Science and Engineering, Center for Composite MaterialsUniversity of DelawareNewarkUSA
  2. 2.Materials and Manufacturing Sciences Division, Weapons & Materials Research DirectorateU.S. Army Research LaboratoryAberdeenUSA

Personalised recommendations