Journal of Materials Science

, Volume 48, Issue 3, pp 1283–1291 | Cite as

Chemical–physical properties, morphology, and magnetic investigations on new cystine functionalized ultra-small super-paramagnetic iron-oxide nanoparticles

  • Sara Dolci
  • Vincenzo Ierardi
  • Maja Remskar
  • Zvonko Jagličić
  • Francesco Pineider
  • Adriano Boni
  • Guido Pampaloni
  • Carlo Alberto Veracini
  • Valentina Domenici
Article

Abstract

Several experimental techniques have been used to investigate the chemical–physical properties of new functionalized ultra-small iron-oxide nanoparticles (USPION), which are of interest for biomedical applications. The chemical composition of oleate-coated iron-oxide (OA-NPs) and cystine-coated iron-oxide (Cy-NPs) nanoparticles was investigated by means of analytical methods and Fourier transform infrared (FT-IR) spectroscopy. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) investigations, at high and low resolutions, on both OA-NPs and Cy-NPs, were performed to investigate their morphology. The magnetization and susceptibility behavior of OA- and Cy-NPs were studied by SQUID magnetometry. The combination of different experimental techniques was of help in characterizing the chemical structure of both magnetic core and surface-coating of OA- and Cy-NPs. AFM/TEM images and magnetic measurements were analyzed in terms of crystallinity, polydispersity, average magnetic core size, and coating effects of these nanoparticles. These results show that the preparations reported in the present paper are effective in obtaining nanoparticles of 4 nm magnetic core size and the procedure is highly reproducible. The presence of the external cystine shell, fundamental for biomedical applications, does not affect the polidispersity, the crystallinity or the average core size. Moreover, similar values of the average core dimensions have been obtained by three different techniques (AFM and TEM images, magnetic measurements).

Graphical Abstract

New cystine-functionalized magnetite nanoparticles have been synthesized. Physical chemical investigations show an average core size of about 4 nm and super-paramagnetic properties.

References

  1. 1.
    Terreni E, Castelli DD, Viale A, Aime S (2010) Chem Rev 110(5):3019CrossRefGoogle Scholar
  2. 2.
    Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Chem Rev 108(6):2064CrossRefGoogle Scholar
  3. 3.
    Schladt TD, Schneider K, Hans J, Schild H, Tremel W (2011) Dalton Trans 40(24):6315CrossRefGoogle Scholar
  4. 4.
    Gamarra LF, Brito GES, Pontuschka WM, Amaro E, Parma AHC, Goya GF (2005) J Magn Magn Mater 289:439CrossRefGoogle Scholar
  5. 5.
    Kellar KE, Fujii DK, Gunther WHH, Briley-Sæbø K, Bjornerud A, Spiller M, Koenig SH (2000) JMRI J Magn Reson Imaging 11(5):488CrossRefGoogle Scholar
  6. 6.
    Taboada E, Rodriguez E, Roig A, Oro J, Roch A, Muller RN (2007) Langmuir 23(8):4583CrossRefGoogle Scholar
  7. 7.
    Qu HO, Caruntu D, Liu HX, O’Connor CJ (2011) Langmuir 27(6):2271CrossRefGoogle Scholar
  8. 8.
    Lee HY, Li Z, Chen K, Hsu AR, Xu CJ, Xie J, Sun SH, Chen XY (2008) J Nucl Med 49(8):1371CrossRefGoogle Scholar
  9. 9.
    Liang S, Wang YX, Yu JF, Zhang CF, Xia JY, Yin DZ (2007) J Mater Sci Mater Med 18(12):2297CrossRefGoogle Scholar
  10. 10.
    Shieh DB, Cheng FY, Su CH, Yeh CS, Wu MT, Wu YN, Tsai CY, Wu CL, Chen DH, Chou CH (2005) Biomaterials 26(34):7183CrossRefGoogle Scholar
  11. 11.
    Patel D, Kell A, Simard B, Xiang B, Lin HY, Tian GH (2011) Biomaterials 32(4):1167CrossRefGoogle Scholar
  12. 12.
    Rousseau V, Pouliquen D, Darcel F, Jallet P, Le Jeune JJ (1998) Magn Reson Mater Phy 6(1):13CrossRefGoogle Scholar
  13. 13.
    Zhao S, Wu HY, Song L, Tegus O, Asuha S (2009) J Mater Sci 44(3):926. doi:10.1007/s10853-008-3192-y CrossRefGoogle Scholar
  14. 14.
    Hyeon T, Lee SS, Park J, Chung Y, Bin Na H (2001) J Am Chem Soc 123(51):12798CrossRefGoogle Scholar
  15. 15.
    Cohen H, Gedanken A, Zhong ZY (2008) J Phys Chem C 112(39):15429CrossRefGoogle Scholar
  16. 16.
    Stolarczyk JK, Ghosh S, Brougham DF (2009) Angew Chem Int Ed 48(1):175CrossRefGoogle Scholar
  17. 17.
    Lee JH, Jang J, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J (2011) Nat Nanotechnol 6:418CrossRefGoogle Scholar
  18. 18.
    Luigjes B, Woudenberg SMC, de Groot R, Meeldijk JD, Torres Galvis HM, de Jong KP, Philipse AP, Erne BH (2011) J Phys Chem C 115:14598CrossRefGoogle Scholar
  19. 19.
    Huang G, Zhang CF, Li SZ, Khemtong C, Yang SG, Tian RH, Minna JD, Brown KC, Gao JM (2009) J Mater Chem 19(35):6367CrossRefGoogle Scholar
  20. 20.
    Chambers M, Finkelmann H, Remškar M, Sánchez-Ferrer A, Zalar B, Žumer S (2009) J Mater Chem 19:1524CrossRefGoogle Scholar
  21. 21.
    Domenici V, Conradi M, Remskar M, Virsek M, Zupancic B, Mrzel A, Chambers M, Zalar B (2011) J Mater Sci 46:3639. doi:10.1007/s10853-011-5280-7 CrossRefGoogle Scholar
  22. 22.
    Dolci S, Ierardi V, Gradišek A, Jagličić Z, Remskar M, Apih T, Cifelli M, Pampaloni G, Veracini CA, Domenici V (2012) Curr Phys Chem, acceptedGoogle Scholar
  23. 23.
    Gmunder H, Eck HP, Droge W (1991) Eur J Biochem 201:113CrossRefGoogle Scholar
  24. 24.
    Gout PW, Buckley AR, Simms CR, Bruchovsky N (2001) Leukemia 15:1633CrossRefGoogle Scholar
  25. 25.
    Shih AY, Erb H, Sun X, Toda S, Kalivas PW, Murphy TH (2006) J Neurosci 26:10514CrossRefGoogle Scholar
  26. 26.
    Conrad M, Sato H (2012) Amino Acids 42:231CrossRefGoogle Scholar
  27. 27.
    Lo M, Wang Y-Z, Gout PW (2008) J Cell Physiol 215:593CrossRefGoogle Scholar
  28. 28.
    Albrecht P, Lewerenz J, Dittmer S, Noack R, Maher P, Methner A (2010) CNS Neurol Disord Drug Targets 9:349CrossRefGoogle Scholar
  29. 29.
    Park J, Lee E, Hwang NM, Kang MS, Kim SC, Hwang Y, Park JG, Noh HJ, Kini JY, Park JH, Hyeon T (2005) Angew Chem Int Ed 44(19):2872CrossRefGoogle Scholar
  30. 30.
    Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Angew Chem Int Ed 46(25):4630CrossRefGoogle Scholar
  31. 31.
    Söderlind F, Pedersen H, Petoral RM Jr, Käll P, Uvdal K (2005) J Colloid Interface Sci 288:140CrossRefGoogle Scholar
  32. 32.
    Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van Duyne RP (1999) J Phys Chem B 103:3854CrossRefGoogle Scholar
  33. 33.
    Knoll A, Magerle R, Krausch G (2001) Macromolecules 34:4159CrossRefGoogle Scholar
  34. 34.
    Wallace TJ (1966) J Org Chem 31(4):1217CrossRefGoogle Scholar
  35. 35.
    Nishio K, Gokon N, Tsubouchi S, Ikeda M, Narimatsu H, Sakamoto S, Izumi Y, Abe M, Handa H (2006) Chem Lett 35:974CrossRefGoogle Scholar
  36. 36.
    Wang X, Stanbury DM (2008) Inorg Chem 47:1224CrossRefGoogle Scholar
  37. 37.
    Sorensen CM (2001) In: Klabunde KJ (ed) Nanoscale materials in chemistry. Wiley–Interscience, New York, p 205Google Scholar
  38. 38.
    Guardia P, Labarta A, Batlle X (2011) J Phys Chem C 115:390CrossRefGoogle Scholar
  39. 39.
    Tartaj P, González-Carreño T, Serna CT (2003) J Phys Chem B 107:20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sara Dolci
    • 1
    • 2
  • Vincenzo Ierardi
    • 3
  • Maja Remskar
    • 4
  • Zvonko Jagličić
    • 5
  • Francesco Pineider
    • 6
    • 7
  • Adriano Boni
    • 8
  • Guido Pampaloni
    • 1
  • Carlo Alberto Veracini
    • 1
  • Valentina Domenici
    • 1
  1. 1.Dipartimento di Chimica e Chimica IndustrialePisaItaly
  2. 2.IMAGO7 Research Foundation ONLUSCalambroneItaly
  3. 3.Physics Department (DIFI)University of Genova and Nanobiotechnologies, National Institute of Cancer Research (IST)GenovaItaly
  4. 4.Jozef Stefan InstituteLjubljanaSlovenia
  5. 5.Institute of Mathematics, Physics and Mechanics and Faculty of Civil and Geodetic EngineeringUniversity of LjubljanaLjubljanaSlovenia
  6. 6.Department of ChemistryINSTM and Università degli Studi di FirenzeSesto FiorentinoItaly
  7. 7.CNR-ISTM PadovaPadovaItaly
  8. 8.Center for Nanotechnology Innovation @NESTIstituto Italiano di TecnologiaPisaItaly

Personalised recommendations