Journal of Materials Science

, Volume 48, Issue 7, pp 2797–2805 | Cite as

Electric-field thermopower modulation in SrTiO3-based field-effect transistors

Energy Materials & Thermoelectrics


Electric-field thermopower modulation method is demonstrated in detail using SrTiO3-based field-effect transistor structure as an example. Using water-infiltrated nanoporous 12CaO·7Al2O3 glass “CAN” as the gate insulator, carrier electrons up to ~1015 cm−2 can accumulate within an extremely narrow 2D electron gas (~2 nm), leading to an unusually large enhancement of thermopower. Our electric field-effect approach should be applicable to fully verify the performance of thermoelectric materials with complicated crystal structures. This approach may accelerate the development of nanostructures of high performance thermoelectric materials.


PbTe Bi2Te3 Thermoelectric Material Gate Insulator Rubrene 



The author thanks Y. Sato, T. Kato, S. Zheng, K. Abe, H. Kumomi, S–W. Kim, K. Nomura, Y. Ikuhara, H. Hosono, T. Mizuno, and R. Asahi for the experimental helps and the valuable discussions. This work was supported by MEXT (22360271, 22015009).


  1. 1.
    Rowe DM (1995) CRC handbook of thermoelectrics. CRC Press, Boca RatonCrossRefGoogle Scholar
  2. 2.
    DiSalvo FJ (1999) Science 285:703CrossRefGoogle Scholar
  3. 3.
    Snyder GJ, Toberer ES (2008) Nat Mater 7:105CrossRefGoogle Scholar
  4. 4.
    Seebeck TJ (1823) Abh K Akad Wiss 265Google Scholar
  5. 5.
    Venkatasubramanian R, Silvola E, Colpitts T, O’Quinn B (2001) Nature 413:597CrossRefGoogle Scholar
  6. 6.
    Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG (2004) Science 303:818CrossRefGoogle Scholar
  7. 7.
    Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G (2008) Ren Z 320:634Google Scholar
  8. 8.
    Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Nature 451:163CrossRefGoogle Scholar
  9. 9.
    Hicks LD, Dresselhaus MS (1993) Phys Rev B 47:12727CrossRefGoogle Scholar
  10. 10.
    Hicks LD, Harman TC, Sun X, Dresselhaus MS (1996) Phys Rev B 53:R10493CrossRefGoogle Scholar
  11. 11.
    Ohta H, Kim SW, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K (2007) Nat Mater 6:129CrossRefGoogle Scholar
  12. 12.
    Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ (2008) Science 321:554CrossRefGoogle Scholar
  13. 13.
    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ (2011) Nature 476:66CrossRefGoogle Scholar
  14. 14.
    Cutler M, Mott NF (1969) Phys Rev 181:1336CrossRefGoogle Scholar
  15. 15.
    Pernstich KP, Rössner B, Batlogg B (2008) Nat Mater 7:321CrossRefGoogle Scholar
  16. 16.
    Liang W, Hochbaum AI, Fardy M, Rabin O, Zhang M, Yang P (2009) Nano Lett 9:1689CrossRefGoogle Scholar
  17. 17.
    Ohta H, Masuoka Y, Asahi R, Kato T, Ikuhara Y, Nomura K, Hosono H (2009) Appl Phys Lett 95:113505CrossRefGoogle Scholar
  18. 18.
    Ohta H, Mizuno T, Zheng S, Kato T, Ikuhara Y, Abe K, Kumomi H, Nomura K, Hosono H (2012) Adv Mater 24:740CrossRefGoogle Scholar
  19. 19.
    Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y, Kawasaki M (2008) Nat Mater 7:855CrossRefGoogle Scholar
  20. 20.
    Kergoat L, Herlogsson L, Braga D, Piro B, Pham M, Crispin X, Berggren M, Horowitz G (2010) Adv Mater 22:2565CrossRefGoogle Scholar
  21. 21.
    Yamada Y, Ueno K, Fukumura T, Yuan HT, Shimotani H, Iwasa Y, Gu L, Tsukimoto S, Ikuhara Y, Kawasaki M (2011) Science 332:1065CrossRefGoogle Scholar
  22. 22.
    Ohta H, Sato Y, Kato T, Kim SW, Nomura K, Ikuhara Y, Hosono H (2010) Nat Commun 1:118CrossRefGoogle Scholar
  23. 23.
    Hayashi K, Matsuishi S, Kamiya T, Hirano M, Hosono H (2002) Nature 419:462CrossRefGoogle Scholar
  24. 24.
    Matsuishi S, Toda Y, Miyakawa M, Hayashi K, Kamiya T, Hirano M, Tanaka I, Hosono H (2003) Science 301:626CrossRefGoogle Scholar
  25. 25.
    Kim SW, Matsuishi S, Nomura T, Kubota Y, Takata M, Hayashi K, Kamiya T, Hirano M, Hosono H (2007) Nano Lett 7:1138CrossRefGoogle Scholar
  26. 26.
    Hayashi K, Hirano M, Hosono H (2005) J Phys Chem B 109:11900CrossRefGoogle Scholar
  27. 27.
    Hosono H, Abe Y (1987) J Am Ceram Soc 70:C38Google Scholar
  28. 28.
    Ohta H, Sugiura K, Koumoto K (2009) Inorg Chem 47:8429CrossRefGoogle Scholar
  29. 29.
    Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M, Koinuma H (1994) Science 266:1540CrossRefGoogle Scholar
  30. 30.
    Light TS, Licht S, Bevilacqua AC, Morash KR (2005) Electrochem Solid State 8:E16CrossRefGoogle Scholar
  31. 31.
    Sze SM (2002) Semiconductor devices: physics and technology 2nd Ed. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Graduate School of EngineeringNagoya UniversityNagoyaJapan
  2. 2.PRESTO, Japan Science and Technology AgencyTokyoJapan

Personalised recommendations