Journal of Materials Science

, Volume 48, Issue 3, pp 1134–1140

Memory switching of ZnGa2Te4 thin films

  • G. B. Sakr
  • S. S. Fouad
  • I. S. Yahia
  • D. M. Abdel Basset


Electrical and switching property of amorphous defect chalcopyrite ZnGa2Te4 thin films prepared by thermal evaporation technique has been studied. The elemental chemical compositions of the prepared bulk as well as the as-deposited film were determined by means of energy dispersive X-ray spectrometry. X-ray diffraction pattern revealed that the powder compound is polycrystalline and the as-deposited and the annealed films at ta ≤ 548 K have the amorphous phase, while that the annealed at t ≥ 573 K are polycrystalline with a single phase of a defect chalcopyrite structure similar to that of the synthesized material. The great advantage of this material is the capability to appear in two different phases, the amorphous and the crystalline phases, with rather different electrical properties. Both dynamic and static IV characteristics and the switching phenomenon at 601 nm are investigated. The threshold switching mechanism was explained by a thermal model of switching, i.e., joule heating with an electrically conducting channel. ZnGa2Te4 is good candidate in phase change memory device.


  1. 1.
    Ovshinsky SR (1968) Phys Rev Lett 2:1450CrossRefGoogle Scholar
  2. 2.
    Jun JH, Cho K, Yun J, Kim S (2011) J Mater Sci 46:6767. doi:10.1007/s10853-011-5633-2 CrossRefGoogle Scholar
  3. 3.
    Lokesh R, Udayashankar NK, Asokan S (2010) J Non-Cryst Solids 356:321CrossRefGoogle Scholar
  4. 4.
    Ovshinsky SR, Fritzsche H (1971) Met Trans 2:641CrossRefGoogle Scholar
  5. 5.
    Al-Ghamdi AA, Nagat AT, Bahabri FS, Al-orainy RH, Al-harbi SR, Al-Hazmi FS (2009) J Alloys Compd 484:561CrossRefGoogle Scholar
  6. 6.
    Madhu BJ, Jayanna HS, Asokan S (2009) J Non-Cryst Solids 355:2630CrossRefGoogle Scholar
  7. 7.
    Slankamence MP, Lukic SR, Zivanov MB (2009) Semicond Sci Technol 24:085021CrossRefGoogle Scholar
  8. 8.
    Kozyukin SA, Popov AL, Voronkov EN (2010) Thin Solid Films 518:5656CrossRefGoogle Scholar
  9. 9.
    Papandreou N, Pantazi A, Sebastian A, Eleftheriou E, Breitwisch M, Lam C, Pozidis H (2010) Solid State Electron 54:991CrossRefGoogle Scholar
  10. 10.
    Serpi A, Zielinger P (1988) Phys Status Solidi A 108:351CrossRefGoogle Scholar
  11. 11.
    Rashmi, Dhawan U (2002) Powder Diffr 7:41CrossRefGoogle Scholar
  12. 12.
    Yahia IS, Fadel M, Sakr GB, Shenouda SS (2010) J Alloys Compd 507:551CrossRefGoogle Scholar
  13. 13.
    Fouad SS, Sakr GB, Yahia IS, Abdel Basset DM (2011) Mater Res Bull 46:2141CrossRefGoogle Scholar
  14. 14.
    Morocoima M, Quintero M, Guerrero E, Tovar R, Conflant P (1997) J Phys Chem Solids 58:503CrossRefGoogle Scholar
  15. 15.
    Tolansky S (1955) Introduction to Interferometry. Longman, LondonGoogle Scholar
  16. 16.
    Sedeek K, Fadel M (1993) Thin Solid Films 229:223CrossRefGoogle Scholar
  17. 17.
    Fadel M, Sedeek K, Abd-El-Salam F (1996) Thin Solid Films 283:239CrossRefGoogle Scholar
  18. 18.
    Afifi MA, Hegab NA, Atyia HE, Farid AS (2008) J. Alloys Comp. 463:10CrossRefGoogle Scholar
  19. 19.
    Mott NF, Davis EA (1971) Electronic process in Non-crystalline Materials. Calendon Press, OxfordGoogle Scholar
  20. 20.
    Mott NF, Davis EA (1970) Philos Mag 22:903CrossRefGoogle Scholar
  21. 21.
    Webb JB, Brodie DE (1974) Can J Phys 52:2240Google Scholar
  22. 22.
    Lim PK, Brodie DE (1977) Can J Phys 55:1512CrossRefGoogle Scholar
  23. 23.
    Shimakawa K, Inagaki Y, Arizum T (1972) Jpn J Appl Phys 12:1043CrossRefGoogle Scholar
  24. 24.
    Lelmini D, Zhang YG (2007) J Appl Phys 102:054517CrossRefGoogle Scholar
  25. 25.
    Redaelli A, Pirovano A, Benvenuti A, Lacaita AL (2008) J Appl Phys 103:111101CrossRefGoogle Scholar
  26. 26.
    Fadel M, Sedeek K, Hegab NA (2000) Vacuum 57:307CrossRefGoogle Scholar
  27. 27.
    Alegria A, Arruabarrena A, Sanz F (1983) J Non-Cryst Solids 58:17CrossRefGoogle Scholar
  28. 28.
    Prakash S, Asokan S, Ghare DB (1994) Semicond Sci Technol 9:1484CrossRefGoogle Scholar
  29. 29.
    Ovshinky SR, Fritzsche H (1973) IEEE Trans Elect Dev 20:91CrossRefGoogle Scholar
  30. 30.
    Chandasree Das, Mohan Rao G, Asokan S (2011) J Non-Cryst Solids 357:165CrossRefGoogle Scholar
  31. 31.
    Kaplan T, Alder D (1971) Appl Phys Lett 19:419CrossRefGoogle Scholar
  32. 32.
    Mott NF (1970) Philos Mag 22:7CrossRefGoogle Scholar
  33. 33.
    Shimakawa K, Inagaki Y, Arizumi T (1972) Jpn J Appl Phys 11:1319CrossRefGoogle Scholar
  34. 34.
    El-Mansy MK, El-Zidia MM, Abou El-Hassan E, Ammar AA (1994) Appl Phys Commun 13:187Google Scholar
  35. 35.
    Kotkata MF (1994) Thin Solid Films 240:143CrossRefGoogle Scholar
  36. 36.
    Abdel Aziz MM (2006) Appl Surf Sci 253:2059CrossRefGoogle Scholar
  37. 37.
    Mehra R, Shyam R, Mathur PC (1979) J Non-Cryst Solids 31:435CrossRefGoogle Scholar
  38. 38.
    Armitage D, Brodie DE, Eastman PC (1971) Can J Phys 49:1662CrossRefGoogle Scholar
  39. 39.
    Boer KW, Ovshinsky SR (1970) J Appl Phys 41:2675CrossRefGoogle Scholar
  40. 40.
    Fritzche H (1974) In: Tauc J (ed) Amorphous and liquid semiconductors. Plenum, London, p 313CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • G. B. Sakr
    • 1
  • S. S. Fouad
    • 4
  • I. S. Yahia
    • 1
    • 2
    • 3
  • D. M. Abdel Basset
    • 4
  1. 1.Nano-Science Laboratory, Department of Physics, Faulty of EducationAin Shams UniversityCairoEgypt
  2. 2.Semiconductor Laboratory, Department of Physics, Faulty of EducationAin Shams UniversityCairoEgypt
  3. 3.Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  4. 4.Department of Physics, Faulty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations