Journal of Materials Science

, Volume 48, Issue 7, pp 2829–2835 | Cite as

Ge/SiGe superlattices for thermoelectric energy conversion devices

  • Stefano Cecchi
  • Tanja Etzelstorfer
  • Elisabeth Müller
  • Antonio Samarelli
  • Lourdes Ferre Llin
  • Daniel Chrastina
  • Giovanni Isella
  • Julian Stangl
  • Douglas J. Paul
Energy Materials & Thermoelectrics


Ge-rich multiple quantum well heterostructures have been investigated as engineered material for efficient thermoelectric generators monolithically integrated on silicon substrates. Thick Ge/SiGe multilayers on Si substrates designed for lateral thermoelectric devices have been grown and characterized in which electrical and thermal conduction occur parallel to the heterostructure interfaces. In this study, an overview of the investigated structures is presented together with results from X-ray scattering and transmission electron microscopy experiments. These analyses confirm the high quality of the material and the uniformity of the structure over the whole deposited thickness. Important parameters in terms of the optimization of the material quality which could affect thermoelectric properties, such as the interfaces roughness and the threading dislocation density, have also been evaluated. Preliminary electrical and Seebeck coefficient measurements indicate the viability of this material for the realization of thermoelectric devices.


Thermoelectric Property Seebeck Coefficient Thermoelectric Generator Multiple Quantum Well Thread Dislocation Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The study was supported by the European Commission through the ICT FET-Proactive Initiative Towards Zero power Project GREEN Silicon (No. 257750) and by the province of Upper Austria. The EC supported also travel expenses for synchrotron beamtime.


  1. 1.
    Rowe DM (ed) (2006) Thermoelectrics handbook: macro to nano. CRC Taylor and Francis, Boca RatonGoogle Scholar
  2. 2.
    Hudak NS, Amatucci GG (2008) J Appl Phys 103:101301CrossRefGoogle Scholar
  3. 3.
    Snyder GJ, Toberer ES (2008) Nat Mater 7:105CrossRefGoogle Scholar
  4. 4.
    Vining CB (2009) Nat Mater 8:83CrossRefGoogle Scholar
  5. 5.
    Whall E, Parker EHC (1987) In: Proceedings of the 1st European conference on thermoelectrics. Peter Peregrinus Ltd., London, p 51Google Scholar
  6. 6.
    Hicks LD, Dresselhaus MS (1993) Phys Rev B 47:12727CrossRefGoogle Scholar
  7. 7.
    Bian Z, Zebarjadi M, Singh R, Ezzahri Y, Shakouri A, Zeng G, Bahk J-H, Bowers JE, Zide JMO, Gossard AC (2007) Phys Rev B 76:205311CrossRefGoogle Scholar
  8. 8.
    Hyldgaard P, Mahan GD (1997) Phys Rev B 56:10754CrossRefGoogle Scholar
  9. 9.
    Chen G (1998) Phys Rev B 57:14958CrossRefGoogle Scholar
  10. 10.
    A Balandin, A Khitun, JL Liu, KL Wang, T Borca-Tasciuc, G Chen (1999) In: Proceedings of the 18th international conference on thermoelectrics. ICT’99, Baltimore, p 189Google Scholar
  11. 11.
    Koga T, Cronin SB, Dresselhaus MS, Liu JL, Wang KL (2000) Appl Phys Lett 77:1490CrossRefGoogle Scholar
  12. 12.
    Fan XF, Zeng G, LaBounty C, Bowers JE, Croke E, Ahn CC, Huxtable S, Majumdar A, Shakouri A (2001) Appl Phys Lett 78:1580CrossRefGoogle Scholar
  13. 13.
    Liu WL, Borca-Tasciuc T, Chen G, Liu JL, Wang KL (2001) J Nanosci Nanotechnol 1:37Google Scholar
  14. 14.
    Beyer H, Nurnus J, Böttner H, Lambrecht A, Roch T, Bauer G (2002) Appl Phys Lett 80:1216CrossRefGoogle Scholar
  15. 15.
    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Nature 413:597CrossRefGoogle Scholar
  16. 16.
    G Chen, SQ Zhou, D-Y Yao, CJ Kim, XY Zheng, ZL Liu, KL Wang (1998) In: 17th International conference on thermoelectrics, Nagoya, p 202Google Scholar
  17. 17.
    Lee SM, Cahill DG, Venkatasubramanian R (1997) Appl Phys Lett 70:2957CrossRefGoogle Scholar
  18. 18.
    Borca-Tasciuc T, Liu W, Liu J, Zeng T, Song DW, Moore CD, Chen G, Wang KL, Goorsky MS (2000) Superlattices Microstruct 28:199CrossRefGoogle Scholar
  19. 19.
    Yang B, Liu WL, Liu Jvl, Wang KL, Chen G (2002) Appl Phys Lett 81:3588CrossRefGoogle Scholar
  20. 20.
    Huxtable ST, Abramson AR, Tien C, Majumdar A, LaBounty C, Fan X, Zeng G, Bowers JE, Shakouri A, Croke ET (2002) Appl Phys Lett 80:1737CrossRefGoogle Scholar
  21. 21.
    Chakraborty S, Kleint CA, Heinrich A, Schneider CM, Schumann J, Falke M, Teichert S (2003) Appl Phys Lett 83:4184CrossRefGoogle Scholar
  22. 22.
    Dismukes JP, Ekstrom L, Steigmeier EF, Kudman I, Beers DS (1964) J Appl Phys 35:2899CrossRefGoogle Scholar
  23. 23.
    Hui WLC, Corra JP (1967) J Appl Phys 38:3477CrossRefGoogle Scholar
  24. 24.
    X Sun, SB Cronin, J Liu, KL Wang, T Koga, MS Dresselhaus, G Chen (1999) In: IEEE proceedings of the 18th international conference on thermoelectrics. IEEE, Piscataway, p 652Google Scholar
  25. 25.
    Zhang Y, Christofferson J, Shakouri A, Zeng G, Bowers JE, Croke ET (2006) IEEE Trans Compon Packag Technol 29:395CrossRefGoogle Scholar
  26. 26.
    Zeng G, Shakouri A, Bounty CL, Robinson G, Croke E, Abraham P, Fan X, Reese H, Bowers JE (1999) IEEE Electron Lett 35:2146CrossRefGoogle Scholar
  27. 27.
    G Zeng, JE Bowers (2005) In: IEEE Proceeding of the International Conference on thermoelectrics. IEEE, New York, p 164Google Scholar
  28. 28.
    Rössner B, Chrastina D, Isella G, von Kanel H (2004) Appl Phys Lett 84(16):3058CrossRefGoogle Scholar
  29. 29.
    Marchionna S, Virtuani A, Acciarri M, Isella G, von Kanel H (2006) Mater Sci Semicond Process 9(4–5):802CrossRefGoogle Scholar
  30. 30.
    Isella G, Chrastina D, Rössner B, Hackbarth T, Herzog H-J, König U, von Känel H (2004) Solid State Electron 48:1317CrossRefGoogle Scholar
  31. 31.
    Paul DJ (2010) Laser Photon Rev 4(5):610CrossRefGoogle Scholar
  32. 32.
    Matthews JW, Blakeslee AE (1974) J Cryst Growth 27:118Google Scholar
  33. 33.
    Bartels WJ, Hornstra J, Lobeek DJW (1986) Acta Cryst A42:539Google Scholar
  34. 34.
    Tersoff J, LeGoues FK (1994) Phys Rev Lett 72:3570CrossRefGoogle Scholar
  35. 35.
    Holý V, Baumbach T (1994) Phys Rev B 49(15):10668CrossRefGoogle Scholar
  36. 36.
    Xie YH, Gilmer GH, Roland C, Silverman PJ, Buratto SK, Cheng JY, Fitzgerald EA, Kortan AR, Schuppler S, Marcus MA, Citrin PH (1994) Phys Rev Lett 73:3006CrossRefGoogle Scholar
  37. 37.
    A Samarelli, L Ferre Llin, Y Zhang, JMR Weaver, P Dobson, S Cecchi, D Chrastina, G Isella, T Etzelstorfer, J Stangl, E Müller Gubler, DJ Paul (2012) In: Proceeding of the ITC/ETC (submitted)Google Scholar
  38. 38.
    Mills G, Zhou H, Midha A, Donaldson L, Weaver JMR (1998) Appl Phys Lett 72:2900CrossRefGoogle Scholar
  39. 39.
    Geballe TH, Hull GW (1954) Phys Rev 94:1134CrossRefGoogle Scholar
  40. 40.
    Watling JR, Paul DJ (2011) J Appl Phys 110:114508CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Stefano Cecchi
    • 1
  • Tanja Etzelstorfer
    • 2
  • Elisabeth Müller
    • 3
  • Antonio Samarelli
    • 4
  • Lourdes Ferre Llin
    • 4
  • Daniel Chrastina
    • 1
  • Giovanni Isella
    • 1
  • Julian Stangl
    • 2
  • Douglas J. Paul
    • 4
  1. 1.L-NESS Politecnico di MilanoPolo Territoriale di ComoComoItaly
  2. 2.Institute of Semiconductor and Solid State PhysicsJohannes Kepler UniversityLinzAustria
  3. 3.Electron Microscopy ETH Zurich (EMEZ)ZurichSwitzerland
  4. 4.School of EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations