Journal of Materials Science

, Volume 48, Issue 7, pp 2883–2892 | Cite as

Lattice resolved annular dark-field scanning transmission electron microscopy of (Al, In)GaN/GaN layers for measuring segregation with sub-monolayer precision

  • T. Walther
  • H. Amari
  • I. M. Ross
  • T. Wang
  • A. G. Cullis
Energy Materials & Thermoelectrics


We have performed lattice resolved annular dark-field (Z-contrast) scanning transmission electron microscopy and combined this with energy-dispersive X-ray spectroscopy as well as simulations to measure quantitatively segregation across strained interfaces in AlGaN/GaN and GaN/InGaN multiple quantum wells of nominal thicknesses between 8 and 0.25 nm. The compositional profiles obtained were corrected for detector dark current and non-linearity of the Z-contrast imaging process before we fitted exponential functions to the profiles across the interface regions. From these, we could highly accurately determine the layer widths, interface widths, and segregation lengths. Experimental values of the segregation lengths calculated varied from 0.3 nm (for InGaN-on-GaN) to 1.4 nm (for AlGaN-on-GaN), with error bars of only ±0.05 nm. A comparison with simulations based on a simple two-state-exchange model for surface segregation shows that the segregation energy for indium atoms is about an order of magnitude smaller than both the corresponding segregation energy for aluminium/gallium atoms and the activation energies for surface segregation of cations in these nitride systems.


  1. 1.
    Muraki K, Fukatsu S, Shiraki Y, Ito R (1992) Appl Phys Lett 61:557CrossRefGoogle Scholar
  2. 2.
    Mayrock O, Wünsche H-J, Henneberger F (2000) Phys Rev B 62:16870CrossRefGoogle Scholar
  3. 3.
    Fujita K, Fukatsu S, Yaguchi H, Shiraki Y, Ito R (1991) Appl Phys Lett 59:2240CrossRefGoogle Scholar
  4. 4.
    Ohtani N, Mokler SM, Xie MH, Zhang J, Joyce BA (1993) Surf Sci 284:305CrossRefGoogle Scholar
  5. 5.
    Walther T, Humphreys CJ, Robbins DJ (1997) Defect Diffusion Forum 143:1135CrossRefGoogle Scholar
  6. 6.
    Duxbury N, Bangert U, Dawson P, Thrush EJ, van der Stricht W, Jacobs K, Moerman I (2000) Appl Phys Lett 76:1600CrossRefGoogle Scholar
  7. 7.
    Kisielowski C, Lilienthal-Weber Z, Nakamura S (1997) Jpn J Appl Phys 36:6932CrossRefGoogle Scholar
  8. 8.
    Gerthsen D, Hahn E, Neubauer B, Rosenauer A, Schön O, Heuken M, Rizzi A (2000) Phys Status Solidi 177:145CrossRefGoogle Scholar
  9. 9.
    Moon Y-T, Kim D-J, Song K-M, Choi C-J, Han S-H, Seong T-Y, Park S-J (2001) J Appl Phys 89:6514CrossRefGoogle Scholar
  10. 10.
    Ruterana P, Kret S, Vivet A, Maciejewski G, Dluzweski P (2002) J Appl Phys 91:8979CrossRefGoogle Scholar
  11. 11.
    Ho IH, Stringfellow GB (1996) Appl Phys Lett 69:2701CrossRefGoogle Scholar
  12. 12.
    Humphreys CJ (2007) Philos Mag 87:1971CrossRefGoogle Scholar
  13. 13.
    O’Neill JP, Ross IM, Cullis AG, Wang T, Parbrook PJ (2003) Appl Phys Lett 83:1965CrossRefGoogle Scholar
  14. 14.
    Wang T, Bai J, Parbrook PJ, Cullis AG (2005) Appl Phys Lett 87:151906CrossRefGoogle Scholar
  15. 15.
    Bai J, Wang T, Parbrook PJ, Cullis AG (2006) Appl Phys Lett 89:131925CrossRefGoogle Scholar
  16. 16.
    Wang T, Lee KB, Bai J, Parbrook PJ, Airey RJ, Wang Q, Hill G, Ranalli F, Cullis AG (2006) Appl Phys Lett 89:081126CrossRefGoogle Scholar
  17. 17.
    Ross IM, Walther T (2012) J Phys Conf Ser 371:012012CrossRefGoogle Scholar
  18. 18.
    Walther T (2006) J Microsc 221:137CrossRefGoogle Scholar
  19. 19.
    Qiu Y, Lari L, Ross IM, Walther T (2011) J Phys Conf Ser 326:012041CrossRefGoogle Scholar
  20. 20.
    Harris JJ, Ashenford DE, Foxon CT, Dobson PJ, Joyce BA (1984) Appl Phys A 33:87CrossRefGoogle Scholar
  21. 21.
    Fukatsu S, Fujita K, Yaguchi H, Shiraki Y, Ito R (1991) Appl Phys Lett 59:2103CrossRefGoogle Scholar
  22. 22.
    Godbey DJ, Lill JV, Deppe J, Hobart KD (1994) Appl Phys Lett 65:711CrossRefGoogle Scholar
  23. 23.
    Yang B, Brandt O, Jenichen B, Müllhäuser J, Ploog KH (1997) J Appl Phys 82:1918CrossRefGoogle Scholar
  24. 24.
    Stanley I, Coleiny G, Venkat R (2003) J Cryst Growth 251:23CrossRefGoogle Scholar
  25. 25.
    Choi S, Kim T-H, Wolter S, Brown A, Everittt HO, Losurdo M, Bruno G (2008) Phys Rev B 77:115435CrossRefGoogle Scholar
  26. 26.
    Dussaigne A, Damilano B, Grandjean N, Massies J (2003) J Cryst Growth 251:471CrossRefGoogle Scholar
  27. 27.
    Liu B, Zhang R, Zheng JG, Ji XL, Fu DY, Xie ZL, Chen DJ, Chen P, Jiang RL, Zheng YD (2011) Appl Phys Lett 98:261916CrossRefGoogle Scholar
  28. 28.
    Amari H, Ross IM, Wang T, Walther T (2012) J Phys Conf Ser 371:012014CrossRefGoogle Scholar
  29. 29.
    Amari H, Lari L, Zhang HY, Geelhaar L, Chèze C, Kappers MJ, McAleese C, Humphreys CJ, Walther T (2011) J Phys Conf Ser 326:012028CrossRefGoogle Scholar
  30. 30.
    Amari H, Kappers MJ, Humphreys CJ, Chèze C, Walther T (2012) Phys Status Solidi C 9:1079CrossRefGoogle Scholar
  31. 31.
    Amari H, Ross IM, Wang T, Walther T (2012) Phys Status Solidi C 9:546CrossRefGoogle Scholar
  32. 32.
    Walther T (2010) J Phys Conf Ser 209:012029CrossRefGoogle Scholar
  33. 33.
    Walther T (2010) J Phys Conf Ser 241:012016CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • T. Walther
    • 1
  • H. Amari
    • 1
  • I. M. Ross
    • 1
  • T. Wang
    • 1
  • A. G. Cullis
    • 1
  1. 1.Department of Electronic and Electrical Engineering, Kroto Centre for High-Resolution Imaging and AnalysisUniversity of SheffieldSheffieldUK

Personalised recommendations