Journal of Materials Science

, Volume 48, Issue 2, pp 920–928 | Cite as

Microstructure analysis of ion beam-induced surface nanostructuring of thin Au film deposited on SiO2 glass

  • Xuan Meng
  • Tamaki Shibayama
  • Ruixuan Yu
  • Shinya Takayanagi
  • Seiichi Watanabe
Article

Abstract

Effects of the irradiation dose on surface nanostructuring accompanied with the dewetting process of Au films deposited on SiO2 glass were examined using an atomic force microscope and a scanning electron microscope. In addition, the microstructural evolution and the chemical concentration of Au films were investigated using a transmission electron microscope equipped with an energy-dispersive spectrometer. As increasing the Ar ion irradiation dose, the lattice expansion of Au nanoscale islands sustained on the SiO2 glass was observed and irradiation-induced lattice defects together with irradiation-induced interface ion mixing were accounted for this lattice expansion. Finally a layer of photosensitive Au nanoballs with highly spherical shape embedded in a SiO2 substrate was obtained after Ar ion irradiation to 10.0 × 1016/cm2 and some of Au nanoballs were found to be single crystals. As the irradiation energy of the Ar ions increased from 100 to 150 keV, the average diameter of the Au nanoballs in the substrate increased and the red shift of the SPR peak was observed. This tendency of the experimental SPR peaks corresponded with that of the theoretically calculated SPR peaks using Mie solution.

Abbreviations

UV

Ultraviolet

AFM

Atomic force microscope

TEM

Transmission electron microscope

SEM

Scanning electron microscope

EDS

Energy-dispersive spectrometry

SPR

Surface plasmon resonance

FCC

Face-centered cubic

References

  1. 1.
    Townsend PD, Chandler PJ, Zhang L (2006) Optical effects of ion implantation, 3rd edn. Cambridge Univ. Press, CambridgeGoogle Scholar
  2. 2.
    Jain PK, Lee KS, EI-Sayed IH, EI-Sayed MA (2006) J Phys Chem B 110:7238CrossRefGoogle Scholar
  3. 3.
    Kim D, Koyama E, Tokuhisa H, Koshizaki N, Kim YD (2008) Appl Phys A Mater Sci Proc 92:263CrossRefGoogle Scholar
  4. 4.
    Dhara S, Chandra S, Magudapathy P, Kalavathi S, Panigrahi BK, Nair KGM, Sastry VS, Hsu CW, Wu CT, Chen KH, Chen LC (2004) J Chem Phys 121:12595CrossRefGoogle Scholar
  5. 5.
    Takeda Y, Plaksin OA, Wang H, Kono K, Umeda N, Kishimoto N (2006) Opt Rev 13:231CrossRefGoogle Scholar
  6. 6.
    Lee DU, Lee MS, Kim J, Kim EK, Koo H, Cho W, Kim WM (2007) Appl Phys Lett 90:093514CrossRefGoogle Scholar
  7. 7.
    Chen S-J, Chien FC, Lin GY, Lee KC (2004) Opt Lett 29:1390CrossRefGoogle Scholar
  8. 8.
    Haglund RF Jr, Yang L, Magruder RH III, White CW, Zuhr RA, Yang L, Dorsinville R, Alfano RR (1994) Nucl Instrum Methods Phys Res, Sect B 91:493CrossRefGoogle Scholar
  9. 9.
    Ajayan PM, Marks LD (1989) Nature (London) 338:139CrossRefGoogle Scholar
  10. 10.
    Valden M, Lai X, Goodman DW (1998) Science 281:1647CrossRefGoogle Scholar
  11. 11.
    Matheu P, Lim SH, Derkacs D, McPheeters C, Yu ET (2008) Appl Phys Lett 93:113108CrossRefGoogle Scholar
  12. 12.
    Tsuji H, Arai N, Ueno K, Matsumoto T, Gotoh N, Adachi K, Kotaki H, Gotoh Y, Ishikawa J (2006) Nucl Instrum Methods Phys Res, Sect B 242:125CrossRefGoogle Scholar
  13. 13.
    Dhara S, Kesavamoorthy R, Magudapathy P, Premila M, Panigrahi BK, Nair KGM, Wu CT, Chen KH, Chen LC (2003) Chem Phys Lett 370:254CrossRefGoogle Scholar
  14. 14.
    Hu X, Cahill DG, Averback RS (2001) J Appl Phys 89:7777CrossRefGoogle Scholar
  15. 15.
    Prakash J, Tripathi A, Rigato V, Pivin JC, Tripathi J, Chae KH, Gautam S, Kumar P, Asokan K, Avasthi DK (2011) J Phys D Appl Phys 44:125302CrossRefGoogle Scholar
  16. 16.
    Kojima Y, Kato T (2008) Nanotechnology 19:255605CrossRefGoogle Scholar
  17. 17.
    Yoshida Y, Watanabe S, Nishijima Y, Ueno K, Misawa H, Kato T (2011) Nanotechnology 22:375607CrossRefGoogle Scholar
  18. 18.
    Trice J, Thomas D, Favazza C, Sureshkumar R, Kalyanaraman R (2007) Phys Rev B 75:235439CrossRefGoogle Scholar
  19. 19.
    White CW, Farlow G, Narayan J (1981) Mater Lett 2:367CrossRefGoogle Scholar
  20. 20.
    Neubeck K, Lefaucheur C-E, Hahn H, Balogh AG, Baumann H, Bethge K, Rück DM (1995) Nucl Instrum Methods Phys Res, Sect B 106:589CrossRefGoogle Scholar
  21. 21.
    Tsaur BY, Mayer JW (1981) Philos Mag A 43:345CrossRefGoogle Scholar
  22. 22.
    Satpati B, Satyam PV, Som T, Dev BN (2004) Appl Phys A 79:447CrossRefGoogle Scholar
  23. 23.
    Stepanova M, Dew SK (2009) Matter 21:224014Google Scholar
  24. 24.
    Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon Press, New YorkGoogle Scholar
  25. 25.
    Sakaguchi N, Kinoshita H, Watanabe S, Sueishi Y, Akasaka N, Takahashi H (2008) J Nucl Mater 382:197CrossRefGoogle Scholar
  26. 26.
    Hu X, Cahill DG, Averback RS, Birtcher RC (2003) J Appl Phys 93:165CrossRefGoogle Scholar
  27. 27.
    McClune WF (1988) Powder diffraction file: alphabetical index, inorganic phases, JCPDS–International Centre for Diffraction Data, Swarthmore, PA (Au: Card No. 4–0784)Google Scholar
  28. 28.
    Hu X, Cahill DG, Averback RS (2002) J Appl Phys 92:3995CrossRefGoogle Scholar
  29. 29.
    Klimmer A, Ziemann P, Biskupek J, Kaiser U, Flesch M (2009) Phys Rev B 79:155427CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xuan Meng
    • 1
    • 3
  • Tamaki Shibayama
    • 2
  • Ruixuan Yu
    • 1
  • Shinya Takayanagi
    • 1
  • Seiichi Watanabe
    • 2
  1. 1.Graduate School of EngineeringHokkaido UniversitySapporoJapan
  2. 2.Center for Advanced Research of Energy Conversion Materials, Faculty of EngineeringHokkaido UniversitySapporoJapan
  3. 3.School of Nuclear Science and TechnologyLanzhou UniversityLanzhouChina

Personalised recommendations