Journal of Materials Science

, Volume 48, Issue 2, pp 758–764 | Cite as

Electronic and optical properties of (Al x Ga1−x )1−y Mn y As single crystal: a new candidate for integrated optical isolators and spintronics

  • B. Merabet
  • Y. Al-Douri
  • H. Abid
  • Ali H. Reshak


We have explored the electronic and optical properties of cubic (Al x Ga1−x )1−y Mn y As system using the FP-LAPW method. The unit cell has 64 atoms, so that one manganese (Mn) atom is placed in the position of gallium site, which corresponds to 3.125 % doping concentration with x = 12.5 %. Our calculations, using local density approximation + U (Hubbard parameter) scheme, predict that the ferromagnetic state for AlGaMnAs, with a magnetic moment of about 4.014 μB per Mn dopant is more favorable. Despite its electronic properties being strongly affected by inducing small amounts of Mn substitutional atoms in the cationic sublattice of AlGaAs, (Al x Ga1−x )1−y Mn y As possesses optical properties strictly less than those of Al x Ga1−x As, especially its optical conductivity at the peak 1.256 eV. The results indicate that AlGaMnAs may be a good candidate for optoelectronics when exploited in optical fiber networks, and it can still be of great interest because of its promising potential when used for spintronics.


Local Density Approximation Optical Isolator Nonradiative Recombination Center Optical Fiber Network GaMnAs Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors (Y.A.) would like to acknowledge the FRGS Grant #: 9003-00249 & 9003-00255 and TWAS-Italy, of his visit to JUST, Jordan under TWAS-UNESCO Associateship for full financial and technical supports, respectively. For Ali H. Reshak, his study was supported from the institutional research concept of the project CENAKVA (No. CZ.1.05/2.1.00/01.0024), the Grant No. 152/2010/Z of the Grant Agency of the University of South Bohemia. The School of Materials Engineering, University Malaysia Perlis (UniMAP), Perlis, Malaysia.


  1. 1.
    Ohno H (1998) Science 281:951CrossRefGoogle Scholar
  2. 2.
    Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K (2000) Nature 408:944CrossRefGoogle Scholar
  3. 3.
    Unjong Y, Nili AM, Mikelsons K, Moritz B, Moreno J, Jarrell M (2010) Phys Rev Lett 104:037201CrossRefGoogle Scholar
  4. 4.
    Awschalom DD, Samarth N, Loss D (eds) (2002) Semiconductor spintronics and quantum computation. Springer-Verlag, BerlinGoogle Scholar
  5. 5.
    Samarth N (2004) Solid State Phys 58:1CrossRefGoogle Scholar
  6. 6.
    MacDonald AH et al (2005) Nat Mater 4:195CrossRefGoogle Scholar
  7. 7.
    Burch KS, Awschalom DD, Basov DN (2008) J Magn Magn Mater 320:3207CrossRefGoogle Scholar
  8. 8.
    Pesci M, Gallino F, Di Valentin C, Pacchioni G (2010) J Phys Chem C 114:1350CrossRefGoogle Scholar
  9. 9.
    Jungwirth T, Jairo Sinova J, Masek J, Kucera A, Mac Donald H (2006) J Mod Phys 78:809CrossRefGoogle Scholar
  10. 10.
    Wu RQ, Peng GW, Liu L, Feng YP, Huang ZG, Wu QY (2006) Appl Phys Lett 89:062505CrossRefGoogle Scholar
  11. 11.
    Hayashi T, Hashimoto Y, Katsumoto S, Iye Y (2001) Appl Phys Lett 78:1691CrossRefGoogle Scholar
  12. 12.
    Kuroiwa T, Yasuda T, Matsukura F, Shen A, Ohno Y, Segawa Y, Ohno H (1998) Electron Lett 34:190CrossRefGoogle Scholar
  13. 13.
    Ohno H, Matsukura F, Omiya T, Akiba N (1999) J Appl Phys 85:4277CrossRefGoogle Scholar
  14. 14.
    Ohno H, Matsukura F, Ohno Y (2002) General report semiconductor spin electronics. JSAP Int 5:4Google Scholar
  15. 15.
    Levy M, Scarmozzino R, Osgood RM Jr, Wolfe R, Cadieu FJ, Hedge H, Gutierrez CJ, Prinz GA (1994) J Appl Phys 75:6286CrossRefGoogle Scholar
  16. 16.
    Shimizu H, Tanaka M (2002) Appl Phys Lett 81:5246CrossRefGoogle Scholar
  17. 17.
    Zaets W, Ando K (1999) IEEE Photonics Technol Lett 11:1012CrossRefGoogle Scholar
  18. 18.
    Shimizu H, Miyamura M, Tanaka M (2000) J Vac Sci Technol 18:2063CrossRefGoogle Scholar
  19. 19.
    Akinaga H, Miyanishi S, Tanaka K, Van Roy W, Onodera K (2000) Appl Phys Lett 76:97CrossRefGoogle Scholar
  20. 20.
    Schulz R, Korn T, Wurstbauer U, Schuh D, Wegscheider W, Schüller C (2010) In: 29th international conference of the physics of semiconductors, AIP conference proceedings, vol 1199, p 155Google Scholar
  21. 21.
    Van Dorpe P, Liu Z, Van Roy W, Motsnyi VF, Sawicki M, Borghs G, De Boeck J (2004) Appl Phys Lett 84:3495CrossRefGoogle Scholar
  22. 22.
    Myers RC, Poggio M, Stern NP, Gossard AC, Awschalom DD (2005) Phys Rev Lett 95:017204CrossRefGoogle Scholar
  23. 23.
    Amemiya T, Shimizu H, Hai PN, Tanaka M, Nakano Y (2007) J Magn Magn Mater 310:2161CrossRefGoogle Scholar
  24. 24.
    Morishita Y, Tsuboi A, Suzuki H, Sato K (1999) J Magn Soc Jpn 23:93CrossRefGoogle Scholar
  25. 25.
    Chiba D, Yamanouchi M, Matsukura F, Abe E, Ohno Y, Ohtani K, Ohno H (2003) J Supercond 16:179CrossRefGoogle Scholar
  26. 26.
    Desclaux JP (1969) Comput Phys Commun 1:216CrossRefGoogle Scholar
  27. 27.
    Coelling DD, Harmon BN (1977) J Phys C 10:3107CrossRefGoogle Scholar
  28. 28.
    Blaha P, Schwartz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2K, an augmented plane wave and local orbitals program for Calculating Crystal Properties, TU Wien, AustriaGoogle Scholar
  29. 29.
    Gao S (2003) Comput Phys Commun 153:190CrossRefGoogle Scholar
  30. 30.
    Schwarz K (2003) J Solid State Chem 176:319CrossRefGoogle Scholar
  31. 31.
    Pask JE, Yang LH, Fong CY, Pickett WE, Dag S (2003) Phys Rev B 67:224420-1Google Scholar
  32. 32.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  33. 33.
    Takahashi NS (1993) In: Adachi S (ed) Properties of aluminium gallium arsenide, EMIS Datareviews Series No. 7, INSPEC, London, p 3Google Scholar
  34. 34.
    Mahadevan P, Zunger A (2003) Phys Rev B 68:075202Google Scholar
  35. 35.
    Sanvito S, Hill NA (2000) Phys Rev B 62Google Scholar
  36. 36.
    Adachi S (2009) Properties of semiconductor alloys: Group-IV, III–V and II–VI semiconductors, edition first published 2009. Wiley, New YorkGoogle Scholar
  37. 37.
    Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) J Appl Phys 89:5815CrossRefGoogle Scholar
  38. 38.
    Shirai M, Ogawa T, Kitagawa I, Suzuki N (1998) J Magn Magn Mater 177–181:1383CrossRefGoogle Scholar
  39. 39.
    Park JH, Kwon SK, Min BI (2000) Phys B Cond Matt 281–282:703CrossRefGoogle Scholar
  40. 40.
    De Teresa JM, Barthélémy A, Fert A, Contour JP, Montaigne F, Seneor P (1999) Science 286Google Scholar
  41. 41.
    van Aken PA, Hoche T, Heyroth F, Keding R, Uecker R (2004) Phys Chem Miner 31:543Google Scholar
  42. 42.
    Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope, 2nd edn. Plenum Press, New YorkCrossRefGoogle Scholar
  43. 43.
    Schattschneider P, Jouffrey B (1995) In: Reimer L (ed) Energy-filtering transmission electron microscopy. Springer, Berlin, p 151Google Scholar
  44. 44.
    Raether H (1980) Excitation of plasmons and interband transitions by electrons. Springer, BerlinGoogle Scholar
  45. 45.
    Schleife A, Rödl C, Fuchs F, Furthmüller J, Bechstedt F (2009) Phys Rev B 80:035112CrossRefGoogle Scholar
  46. 46.
    Reshak AH, Kityk IV, Auluck S (2010) J Phys Chem B 114:16705CrossRefGoogle Scholar
  47. 47.
    Reshak AH, Auluck S, Kityk IV, Chen X (2009) J Phys Chem B 113:9161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Applied Materials Laboratory, Research CenterSidi Bel Abbes UniversitySidi Bel AbbésAlgeria
  2. 2.Institute of Nano Electronic EngineeringUniversity Malaysia PerlisKangarMalaysia
  3. 3.School of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CBNove HradyCzech Republic
  4. 4.School of Materials EngineeringUniversity Malaysia PerlisKangarMalaysia

Personalised recommendations