Advertisement

Journal of Materials Science

, Volume 48, Issue 2, pp 565–577 | Cite as

Fullerene-like models for microporous carbon

  • Peter J. F. HarrisEmail author
Review

Abstract

Microporous carbons are important in a wide variety of applications, ranging from pollution control to supercapacitors, yet their structure at the molecular level is poorly understood. Over the years, many structural models have been put forward, but none has been entirely satisfactory in explaining the properties of the carbons. The discovery of fullerenes and fullerene-related structures such as carbon nanotubes gave us a new perspective on the structure of solid carbon, and in 1997 it was suggested that microporous carbon may have a structure related to that of the fullerenes. Recently, evidence in support of such a structure has been obtained using aberration-corrected transmission electron microscopy, electron energy loss spectroscopy and other techniques. This article describes the development of ideas about the structure of microporous carbon, and reviews the experimental evidence for a fullerene-related structure. Theoretical models of the structural evolution of microporous carbon are summarised, and the use of fullerene-like models to predict the adsorptive properties of microporous carbons are reviewed.

Keywords

Fullerene Monte Carlo Graphene Sheet Electron Energy Loss Spectroscopy Pore Size Distribution Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I thank Artur Terzyk and Kazu Suenaga for discussions.

References

  1. 1.
    Derbyshire F, Jagtoyen M, Thwaites M (1995) In: Patrick JW (ed) Porosity in carbons: characterization and applications. Edward Arnold, London, p 227Google Scholar
  2. 2.
    Patrick JW (ed) (1995) Porosity in carbons: characterization and applications. Edward Arnold, LondonGoogle Scholar
  3. 3.
    Marsh H, Rodriguez-Reinoso F (2006) Activated carbon. Elsevier, OxfordGoogle Scholar
  4. 4.
    Harris PJF, Tsang SC (1997) Philos Mag A 76:667CrossRefGoogle Scholar
  5. 5.
    Harris PJF (1997) Int Mater Rev 42:206CrossRefGoogle Scholar
  6. 6.
    Emmett PH (1948) Chem Rev 43:69CrossRefGoogle Scholar
  7. 7.
    Franklin RE (1951) Proc R Soc A 209:196CrossRefGoogle Scholar
  8. 8.
    Lim YI, Bhatia SK (2011) J Membr Sci 369:319CrossRefGoogle Scholar
  9. 9.
    Sitprasert C, Zhu ZH, Wang FY, Rudolph V (2011) Chem Eng Sci 66:5447CrossRefGoogle Scholar
  10. 10.
    Ergun S, Tiensuu VH (1959) Acta Crystallogr A 12:1050CrossRefGoogle Scholar
  11. 11.
    Burian A, Ratuszna A, Dore JC, Howells SW (1998) Carbon 36:1613CrossRefGoogle Scholar
  12. 12.
    Ban LL (1972) In: Roberts MW, Thomas JM (eds) Surface and defect properties of solids, vol 1. Chemical Society, London, p 54CrossRefGoogle Scholar
  13. 13.
    Ban LL, Crawford D, Marsh H (1975) J Appl Crystallogr 8:415CrossRefGoogle Scholar
  14. 14.
    Jenkins GM, Kawamura K (1971) Nature 231:175CrossRefGoogle Scholar
  15. 15.
    Oberlin A (1989) In: Thrower PA (ed) Chemistry and physics of carbon, vol 22. Dekker, New York, p 1Google Scholar
  16. 16.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162CrossRefGoogle Scholar
  17. 17.
    Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Nature 347:354CrossRefGoogle Scholar
  18. 18.
    Kroto HW (1992) Angew Chem 31:111CrossRefGoogle Scholar
  19. 19.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  20. 20.
    Harris PJF (2009) Carbon nanotube science. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. 21.
    Harris PJF, Tsang SC, Claridge JB, Green MLH (1994) J Chem Soc, Faraday Trans 90:2799CrossRefGoogle Scholar
  22. 22.
    Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Chem Phys Lett 309:165CrossRefGoogle Scholar
  23. 23.
    Harris PJF, Burian A, Duber S (2000) Philos Mag Lett 80:381CrossRefGoogle Scholar
  24. 24.
    Harris PJF (2003) In: Radovic LR (ed) Chemistry and physics of carbon, vol 28. Dekker, New York, p 1Google Scholar
  25. 25.
    Harris PJF (2004) Philos Mag 84:3159CrossRefGoogle Scholar
  26. 26.
    Harris PJF (2005) Crit Rev Solid State Mater Sci 30:235CrossRefGoogle Scholar
  27. 27.
    Iijima S, Ichihashi T, Ando Y (1992) Nature 356:776CrossRefGoogle Scholar
  28. 28.
    Erni R (2010) Aberration-corrected imaging in transmission electron microscopy: an introduction. Imperial College Press, LondonCrossRefGoogle Scholar
  29. 29.
    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S (2004) Nature 430:870CrossRefGoogle Scholar
  30. 30.
    Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A (2008) Nano Lett 8:3582CrossRefGoogle Scholar
  31. 31.
    Harris PJF, Liu Z, Suenaga K (2008) J Phys: Condens Matter 20:362201CrossRefGoogle Scholar
  32. 32.
    Zhang Z, Brydson R, Aslam Z, Reddy S, Brown A, Westwood A, Rand B (2011) Carbon 49:5049CrossRefGoogle Scholar
  33. 33.
    El-Barbary AA, Trasobares S, Ewels CP, Stephan O, Okotrub AV, Bulusheva LG, Fall CJ, Heggie MI (2006) J Phys: Conf Ser 26:149CrossRefGoogle Scholar
  34. 34.
    Burian A, Dore JC (2000) Acta Phys Pol, A 98:457Google Scholar
  35. 35.
    Burian A, Daniel P, Duber S, Dore JC (2001) Philos Mag B 81:525CrossRefGoogle Scholar
  36. 36.
    Hawelek L, Koloczek J, Brodka A, Dore JC, Honkimaki V, Burian A (2007) Philos Mag 87:4973CrossRefGoogle Scholar
  37. 37.
    Hawelek L, Brodka A, Dore JC, Honkimaki V, Burian A (2008) Diam Relat Mater 17:1633CrossRefGoogle Scholar
  38. 38.
    Acharya M, Strano MS, Mathews JP, Billinge JL, Petkov V, Subramoney S, Foley HC (1999) Philos Mag B 79:1499CrossRefGoogle Scholar
  39. 39.
    Kumar A, Lobo RF, Wagner NJ (2005) Carbon 43:3099CrossRefGoogle Scholar
  40. 40.
    Shi YF (2008) J Chem Phys 128:234707CrossRefGoogle Scholar
  41. 41.
    Powles RC, Marks NA, Lau DWM (2009) Phys Rev B 79:075430CrossRefGoogle Scholar
  42. 42.
    Terzyk AP, Furmaniak S, Gauden PA, Harris PJF, Włoch J, Kowalczyk P (2007) J Phys: Condens Matter 19:406208CrossRefGoogle Scholar
  43. 43.
    Terzyk AP, Furmaniak S, Harris PJF, Gauden PA, Włoch J, Kowalczyk P, Rychlicki G (2007) Phys Chem Chem Phys 9:5919CrossRefGoogle Scholar
  44. 44.
    Terzyk AP, Furmaniak S, Gauden PA, Harris PJF, Włoch J (2008) J Phys: Condens Matter 20:385212CrossRefGoogle Scholar
  45. 45.
    Furmaniak S, Terzyk AP, Gauden PA, Kowalczyk P, Harris PJF (2009) J Phys: Condens Matter 21:315005CrossRefGoogle Scholar
  46. 46.
    Furmaniak S, Terzyk AP, Gauden PA, Harris PJF, Kowalczyk P (2010) J Phys: Condens Matter 22:085003CrossRefGoogle Scholar
  47. 47.
    Terzyk AP, Gauden PA, Furmaniak S, Wesołowski RP, Harris PJF (2010) Phys Chem Chem Phys 12:812CrossRefGoogle Scholar
  48. 48.
    Gauden PA, Terzyk AP, Furmaniak S, Harris PJF, Kowalczyk P (2010) Appl Surf Sci 256:5204CrossRefGoogle Scholar
  49. 49.
    Furmaniak S, Terzyk AP, Gauden PA, Kowalczyk P, Harris PJF (2011) J Phys: Condens Matter 23:395005CrossRefGoogle Scholar
  50. 50.
    Bhattacharya S, Gubbins KE (2006) Langmuir 22:7726CrossRefGoogle Scholar
  51. 51.
    Yan QL, de Pablo JJ (1999) J Chem Phys 111:9509CrossRefGoogle Scholar
  52. 52.
    Kruk M, Jaroniec M, Gadkaree KP (1999) Langmuir 15:1442CrossRefGoogle Scholar
  53. 53.
    Horvath G, Kawazoe K (1983) J Chem Eng Jpn 16:470CrossRefGoogle Scholar
  54. 54.
    Dubinin MM, Radushkevich LV (1947) Dokl Akad Nauk SSSR 55:327Google Scholar
  55. 55.
    Dubinin MM, Astakhov VA (1971) Izv Akad Nauk SSSR Seriya Khimicheskaya 1:5Google Scholar
  56. 56.
    Izotova TI, Dubinin MM (1965) Zh Fizicheskoi Khimii 39:2796Google Scholar
  57. 57.
    McEnaney B, Mays TJ, Chen XS (1998) Fuel 77:557CrossRefGoogle Scholar
  58. 58.
    Thomson KT, Gubbins KE (2000) Langmuir 16:5761CrossRefGoogle Scholar
  59. 59.
    Biggs MJ, Buts A, Williamson D (2004) Langmuir 20:7123CrossRefGoogle Scholar
  60. 60.
    Do DD, Do HD (2006) J Phys Chem B 110:17531CrossRefGoogle Scholar
  61. 61.
    Palmer JC, Moore JD, Brennan JK, Gubbins KE (2011) J Phys Chem Lett 2:165CrossRefGoogle Scholar
  62. 62.
    Kashihara S, Otani S, Orikasa H, Hoshikawa Y, Ozaki J, Kyotani T (2012) Carbon 50:3310CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Centre for Advanced Microscopy, J.J. Thomson Physical LaboratoryUniversity of ReadingReadingUK

Personalised recommendations