Skip to main content
Log in

Experimental characterization of microstructure development during loading path changes in bcc sheet steels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Interstitial free sheet steels show transient work hardening behavior, i.e., the Bauschinger effect and cross hardening, after changes in the loading path. This behavior affects sheet forming processes and the properties of the final part. The transient work hardening behavior is attributed to changes in the dislocation structure. In this work, the morphology of the dislocation microstructure is investigated for uniaxial and plane strain tension, monotonic and forward to reverse shear, and plane strain tension to shear. Characteristic features such as the thickness of cell walls and the shape of cells are used to distinguish microstructural patterns corresponding to different loading paths. The influence of the crystallographic texture on the dislocation structure is analyzed. Digital image processing is used to create a “library” of schematic representations of the dislocation microstructure. The dislocation microstructures corresponding to uniaxial tension, plane strain tension, monotonic shear, forward to reverse shear, and plane strain tension to shear can be distinguished from each other based on the thickness of cell walls and the shape of cells. A statistical analysis of the wall thickness distribution shows that the wall thickness decreases with increasing deformation and that there are differences between simple shear and uniaxial tension. A change in loading path leads to changes in the dislocation structure. The knowledge of the specific features of the dislocation structure corresponding to a loading path may be used for two purposes: (i) the analysis of the homogeneity of deformation in a test sample and (ii) the analysis of a formed part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nesterova EV, Bacroix B, Teodosiu C (2001) Mater Sci Eng A 309–310:495

    Google Scholar 

  2. Nesterova EV, Bacroix B, Teodosiu C (2001) Metall Mater Trans A 32A:2527

    Article  CAS  Google Scholar 

  3. Fernandes JV, Schmitt JH (1983) Philos Mag 48:841

    Article  CAS  Google Scholar 

  4. Pantleon W, Stoyan D (2000) Acta Mater 48:3005

    Article  CAS  Google Scholar 

  5. Rauch EF, Schmitt JH (1989) Mater Sci Eng A 113:441

    Article  Google Scholar 

  6. Lins JFC, Sandim HRZ, Kestenbach HJ (2007) J Mater Sci 42:6572. doi:10.1007/ s10853-007-1515-z

    Article  CAS  Google Scholar 

  7. Wilson DV, Bate PS (1994) Acta Metall Mater 42:1099

    Article  CAS  Google Scholar 

  8. Vincze G, Rauch EF, Gracio JJ, Barlat F, Lopes AB (2005) Acta Mater 53:1005

    Article  CAS  Google Scholar 

  9. Hasegawa T, Yakou T, Karashima S (1975) Mater Sci Eng 20:267

    Article  CAS  Google Scholar 

  10. Bouvier S, Alves J, Oliveira M, Menezes L (2005) Comput Mater Sci 32:301

    Article  Google Scholar 

  11. Figueiredo R, Corrêa E, Monteiro W, Aguilar M, Cetlin P (2010) J Mater Sci 45:804. doi:10.1007/s10853-009-4003-9

    Article  CAS  Google Scholar 

  12. Ding X, He G, Chen C (2010) J Mater Sci 45:4046. doi:10.1007/s10853-010-4487-3

    Article  CAS  Google Scholar 

  13. Landau P, Shneck R, Makov G, Venkert A (2007) J Mater Sci 42:9775. doi:10.1007/s10853-007-1999-6

    Article  CAS  Google Scholar 

  14. Thuillier S, Rauch EF (1994) Acta Metall Mater 42:1973

    Article  CAS  Google Scholar 

  15. Teodosiu C, Hu Z (1998) Microstructure in the continuum modelling of plastic anisotropy. Proc 19th Risø Inter Symp Mater Sci: Model Struct Mech Mater Mic Prod, Risø Nat Lab, Roskilde, Denmark, p 149

  16. Noman M, Clausmeyer T, Barthel C, Svendsen B, Huétink J, van Riel M (2010) Mater Sci Eng A 527:2515

    Article  Google Scholar 

  17. Teodosiu C, Hu Z (1995) In: Shen SF, Dawson PR (eds) Sim mater process: theory, methods and applications. Balkema, Rotterdam, p 173

    Google Scholar 

  18. Wang J, Levkovitch V, Reusch F, Svendsen B, Huétink J, van Riel M (2008) Int J Plast 24:1039

    Article  CAS  Google Scholar 

  19. Peeters B, Kalidindi SR, Teodosiu C, van Houtte P, Aernoudt E (2002) J Mech Phys Solid 50:783

    Article  Google Scholar 

  20. Holmedal B, van Houtte P, An Y (2008) Int J Plast 24:1360

    Article  CAS  Google Scholar 

  21. Beyerlein I, Alexander D, Tomé C (2007) J Mater Sci 42:1733. doi:10.1007/s10853-006-0906-x

    Article  CAS  Google Scholar 

  22. Wang J, Levkovitch V, Svendsen B (2006) J Mater Process Techol 177:430

    Article  CAS  Google Scholar 

  23. Thuillier S, Manach PY, Menezes LF (2010) J Mater Process Techol 210:226

    Article  Google Scholar 

  24. van Riel M, van den Boogaard AH (2007) Scr Mater 57:381

    Article  Google Scholar 

  25. Cao J, Shi MF, Stoughton TB, Wang CT, Zhang L (2005) Proc NUMISHEET 2005: The Numisheet 2005 Benchmark Study, Part B, Detroit. Am Inst Phys 778:881

    Google Scholar 

  26. DIN EN 10130 (2006) Cold rolled low carbon steel flat products for cold forming Technical delivery conditions. Techn rep DIN

  27. Clausmeyer T, van den Boogaard AH, Noman M, Gershteyn G, Schaper M, Svendsen B, Bargmann S (2011) Int J Mater Form 4:141

    Article  Google Scholar 

  28. van Riel M (2009) Strain path dependency in sheet metal—experiments and models. Dissertation, Universiteit Twente

  29. Kuwabara T (2007) Int J Plast 23:385

    Article  CAS  Google Scholar 

  30. Hu Z (1994) Acta Metall Mater 42:3481

    Article  Google Scholar 

  31. Bouvier S, Teodosiu C, Haddadi H, Tabacaru V (2003) J Phys IV France 105:215

    Article  Google Scholar 

  32. Bauschinger J (1881) Zivilingenieur 21:289

    Google Scholar 

  33. Hielscher R, Schaeben H (2008) J Appl Crystallogr 41:1024

    Article  CAS  Google Scholar 

  34. Bacroix B, Hu Z (1995) Metall Mater Trans A 26:601

    Article  Google Scholar 

  35. Hughes DA, Hansen N (1991) Mater Sci Technol 7:544

    Article  CAS  Google Scholar 

  36. Kuhlmann-Wilsdorf D, Hansen N (1991) Scr Metall Mater 25:1557

    Article  CAS  Google Scholar 

  37. Kuhlmann-Wilsdorf D (1989) Mater Sci Eng A 113:1

    Article  Google Scholar 

  38. Juda U, Frank-Rotsch C, Rudolph P (2008) J Mater Sci 19:342. doi:10.1007/s10854-007-9554-4

    Google Scholar 

  39. Kurzydłowski KJ (1995) The quantitative description of the microstructure of materials. CRC Press, London

    Google Scholar 

  40. Rasband WS (2004) ImageJ. National Institutes of Health, Bethesda, http://rsb.info.nih.gov/ij/. Accessed July 12 2012

  41. Gonzalez RC, Woods RE, Eddins SL (2008) Digital image processing using MATLAB®. Gatesmark Publishing, Knoxville

    Google Scholar 

  42. Bailey JE, Hirsch PB (1960) Philos Mag 5:485

    Article  CAS  Google Scholar 

  43. Stremel MA, Belyakov BG (1968) Phys Metal Metallogr 25:140

    Google Scholar 

  44. Rybin VV (1986) Severe plastic deformations and fracture of metals. Metallurgiya, Moscow

    Google Scholar 

  45. Li BL, Godfrey A, Meng QC, Liu Q, Hansen N (2004) Acta Mater 52:1069

    Article  CAS  Google Scholar 

  46. Keh AS, Spitzig WA, Nakada Y (1971) Philos Mag 23:829

    Article  CAS  Google Scholar 

  47. Spitzig WA, Keh AS (1971) Metall Trans 1:2751

    Google Scholar 

  48. Böhm H (1968) Einführung in die Metallkunde. Verlag Bibliographisches Institut AG, Mannheim

    Google Scholar 

  49. Haddadi H, Bouvier S, Banu M, Maier C, Teodosiu C (2006) Int J Plast 22:2226

    Article  Google Scholar 

  50. Pantleon W (1998) Acta Mater 46:451

    Article  CAS  Google Scholar 

  51. Hughes DA, Hansen N (2000) Acta Mater 48:2985

    Article  CAS  Google Scholar 

  52. Langford G, Cohen M (1975) Metall Mater Trans A 6:901

    Article  Google Scholar 

  53. GodfreyA Hughes DA (2000) Acta Mater 48:1897

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work provided by the German Science Foundation (DFG) under contract PAK 250 (TP3, TP4, TP5) is greatly acknowledged. The material investigated for this paper was provided and chemically analyzed by ThyssenKrupp Steel Europe AG. The authors thank Dr.-Ing. Malek Homayonifar from the Institute of Mechanics for valuable discussions on texture. The authors also thank the reviewers of a previous version for the instructive and helpful comments which have led to a considerable improvement of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Clausmeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clausmeyer, T., Gerstein, G., Bargmann, S. et al. Experimental characterization of microstructure development during loading path changes in bcc sheet steels. J Mater Sci 48, 674–689 (2013). https://doi.org/10.1007/s10853-012-6780-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6780-9

Keywords

Navigation