Advertisement

Electrochemical performance and thermal stability of GaF3-coated LiNi0.5Mn1.5O4 as 5 V cathode materials for lithium ion batteries

  • 867 Accesses

  • 25 Citations

Abstract

LiNi0.5Mn1.5O4 coated with various amounts of GaF3 were prepared and investigated as cathode materials for lithium ion batteries. The sample was characterized by X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy (EDX). The results indicated that the electrochemical performance of LiNi0.5Mn1.5O4 was effectively improved by the GaF3 coating. The 0.5 wt% GaF3-coated LiNi0.5Mn1.5O4 delivered a discharge capacity of 97 mAh g−1 at 20 C (3000 mA g−1), while the pristine sample only yielded 80 mAh g−1 at 10 C. Meanwhile, the 0.5 wt% GaF3-coated LiNi0.5Mn1.5O4 exhibited an obviously better cycle life than the bare sample at 60 °C, delivering a discharge capacity of 120.4 mAh g−1 after 300 cycles, 82.9 % of its initial discharge capacity, while the pristine only gave 75 mAh g−1. At 0.1 C, the self-discharge of 0.5 wt% GaF3-coated LiNi0.5Mn1.5O4 is about 3.4 %, while the pristine is about 10.2 % after a 5-day rest at room temperature. Furthermore, GaF3 coating greatly reduced the self-heating rate and improved the thermal stability of LiNi0.5Mn1.5O4. These improvements were attributed to the GaF3 layer not only increasing the electronic conductivity of the LiNi0.5Mn1.5O4 but also effectively suppressing the reaction between the LiNi0.5Mn1.5O4 and the electrolytes, which reduced the charge-transfer impedance and the dissolution of Ni and Mn during cycling.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Change history

  • 16 January 2020

    Figure��2f was incorrect in the original article. The correct figure is as follows.

References

  1. 1.

    Winter M, Brodd J (2004) Chem Rev 104:4254

  2. 2.

    Kim MG, Cho J (2009) Adv Funct Mater 19:1

  3. 3.

    Menetrier M, Saadoune I, Levasseur S, Delmas C (1999) J Mater Chem 9:1135

  4. 4.

    Cho J, Kim YJ, Park B (2001) Angew Chem Int Ed 40:3367

  5. 5.

    Fey GTK, Yang HZ, Kumar TP, Naik SP, Chiang AT, Lee DC, Lin JR (2004) J Power Sources 132:172

  6. 6.

    Chang WY, Choi JW, Im JC, Lee JK (2010) J Power Sources 195:320

  7. 7.

    Zeng XL, Huang YY, Luo FL, He YB, Tong DG (2010) J Sol-Gel Sci Technol 54:139

  8. 8.

    Padhi AK, Nanjundasawamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

  9. 9.

    Xia Y, Yoshio M, Noguchi H (2006) Electrochim Acta 52:240

  10. 10.

    Park KS, Schougaard SB, Goodenough JB (2007) Adv Mater 19:848

  11. 11.

    Liu J, Wang J, Yan X, Zhang X, Yang G, Jalbout F, Wang R (2009) Electrochim Acta 54:5656

  12. 12.

    Tong DG, Luo FL, Chu W, Li YL, Wu P (2010) Mater Chem Phys 124:1

  13. 13.

    Tong DG, Li YL, Chu W, Wu P, Luo FL (2011) Dalton Trans 40:4087

  14. 14.

    Zhang L, Xiang HF, Zhu XF, Yang WS, Wang H (2012) J Mater Sci 47:3076. doi:10.1007/s10853-011-6139-7

  15. 15.

    Zhong Q, Bonakclarpour A, Zhang M, Gao Y, Dahn JR (1997) J Electrochem Soc 144:205

  16. 16.

    Obrovac MN, Gao Y, Dahn JR (1998) Phys Rev B 57:5728

  17. 17.

    Ohzuku T, Brodd RJ (2007) J Power Sources 174:449

  18. 18.

    Fergus JW (2010) J Power Sources 195:939

  19. 19.

    Liu GQ, Wen L, Liu YM (2010) J Solid State Electrochem 14:2191

  20. 20.

    Sun YK, Lee YS, Yoshio M, Amine K (2002) Electrochem Solid-State Lett 5:A99

  21. 21.

    Sun YK, Yoon CS, Oh IH (2003) Electrochim Acta 48:503

  22. 22.

    Sun YK, Lee YS, Yoshio M, Amine K (2003) J. Electrochem Soc 150:L11

  23. 23.

    Kobayashi Y, Miyashiro H, Takei K, Shigemura H, Tabuchi M, Kageyama H, Iwahori T (2003) J Electrochem Soc 150:A1577

  24. 24.

    Alcantara R, Jaraba M, Lavela P, Tirado JL (2004) J Electrochem Soc 566:187

  25. 25.

    Arrebola J, Caballero A, Hernan L, Morales J, Castellon ER, Barrado JRR (2007) J Electrochem Soc 154:A178

  26. 26.

    Fan Y, Wang J, Tang Z, He W, Zhang J (2007) Electrochim Acta 52:3870

  27. 27.

    Liu J, Manthiram A (2009) J Electrochem Soc 156:S13

  28. 28.

    Liu J, Manthiram A (2009) Chem Mater 21:1695

  29. 29.

    Tong DG, Luo YY, He Y, Ji XY, Cao JL, Tang LX, Tang AD, Huang KL, Lai QY (2006) Mater Sci Eng B 128:220

  30. 30.

    Wang Y, Zaghib K, Guerfi A, Bazito FFC, Torresi RM, Dahn JR (2007) Electrochim Acta 52:6234

  31. 31.

    Ishihara T, Koga M, Matsumoto H, Yoshio M (2007) Electrochem Solid-State Lett 10:A74

  32. 32.

    West WC, Whitacre JF, Leifer N, Greenbaum S, Smart M, Bugga R, Blanco M, Narayanan SR (2007) J Electrochem Soc 154:A929

  33. 33.

    Ohzuku T, Yamato R, Kawai T, Ariyoshi K (2008) J Solid State Electrochem 12:797

  34. 34.

    Wang H, Xia H, Lai MO, Lu L (2009) Electrochem Commun 11:1539

  35. 35.

    Kunduraci M, Al-Sharab JF, Amatucci GG (2006) Chem Mater 18:3585

  36. 36.

    Yang TY, Zhang NQ, Lang Y, Sun KN (2011) J Alloy Compd 509:3783

  37. 37.

    Liu J, Manthiram A (2009) J Electrochem Soc 156:A66

  38. 38.

    Tong DG, Wang D, Chu W, Sun JH, Wu P (2010) Electrochim Acta 55:2299

  39. 39.

    Wu HM, Belharouak I, Abouimrane A, Sun YK, Amine K (2010) J Power Sources 195:2909

  40. 40.

    Kanamura K, Tamura H, Takehara ZI (1992) J Electroanal Chem 333:127

  41. 41.

    Kanamura K, Tamura H, Shiraishi S, Takehara ZI (1995) J Electroanal Chem 394:49

  42. 42.

    Kanamura K, Tamura H, Shiraishi S, Takehara ZI (1995) Electrochim Acta 40:913

  43. 43.

    Schechter A, Aurbach D, Cohen H (1999) Langmuir 15:3334

  44. 44.

    Aurbach D, Gamolsky K, Markovsky B, Salitra G, Goger Y, Heider U, Oesten R, Schmidt M (2000) J Electrochem Soc 147(4):1322

  45. 45.

    Edström K, Gustafsson T, Thomas JO (2004) Electrochim Acta 50:397

  46. 46.

    Carlson TA (1975) Photoelectron and auger spectroscopy, appendix 3. Plenum, New York

  47. 47.

    Li JH (2004) Advanced materials of batteries. Chemistry Industry Publishing House, Beijing

  48. 48.

    Wang YD, Jiang JW, Dahn JR (2007) Electrochem Commun 9:2534

  49. 49.

    Richard MN, Dahn JR (1999) J Power Sources 79:135

  50. 50.

    Patoux S, Sannier L, Lignier H, Reynier Y, Bourbon C, Jouanneau S, Cras FL, Martinet S (2008) Electrochim Acta 53:4137

  51. 51.

    Belharouak I, Lu W, Vissers V, Amine K (2006) Electrochem Commun 8:329

  52. 52.

    Dahn JR, Fuller EW, Obrovac M, Sacken UV (1994) Solid State Ion 69(3/4):265

Download references

Acknowledgements

This study was financially supported by the Cultivating programme of Middle-aged backbone teachers (HG0092), the Cultivating programme for Excellent Innovation Team of Chengdu University of Technology (HY0084) and Innovative Experimental Items for College Students of Sichuan Province (SZH1106CX04).

Author information

Correspondence to D. G. Tong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, Y.Y., Zeng, X.L., Zhou, C. et al. Electrochemical performance and thermal stability of GaF3-coated LiNi0.5Mn1.5O4 as 5 V cathode materials for lithium ion batteries. J Mater Sci 48, 625–635 (2013). https://doi.org/10.1007/s10853-012-6765-8

Download citation

Keywords

  • Discharge Capacity
  • Electrochemical Impedance Spectroscopy
  • Cathode Material
  • LiFePO4
  • Initial Discharge Capacity