Journal of Materials Science

, Volume 48, Issue 1, pp 227–231 | Cite as

Effect of co-substitution of Mn and Al on thermoelectric properties of chromium disilicide

  • S. Perumal
  • S. Gorsse
  • U. Ail
  • B. Chevalier
  • R. Decourt
  • A. M. Umarji


CrSi2 was earlier reported to be an interesting thermoelectric material for high temperature applications because of its high oxidation resistance and good mechanical properties. In order to enhance its figure of merit, Mn at Cr site and Al at Si site were substituted into CrSi2. Our results indicate that Cr1−x Mn x Si2−x Al x solid solutions exhibit significantly lower thermal conductivity and a higher figure of merit than CrSi2.


Seebeck Coefficient Total Thermal Conductivity Hole Carrier Waste Heat Recovery System Thermal Conductivity Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by a research grant from the Indo-French Centre for the Promotion of Advanced Research, IFCPAR/CEFIPRA (Program No. 4008-2).


  1. 1.
    Rowe DM (ed) (2006) Thermoelectric handbook: macro to nano. CRC/Taylor & Francis, Boca RatonGoogle Scholar
  2. 2.
    Fedorov MI (2009) J Thermoelectr 2:51Google Scholar
  3. 3.
    Nishida I (1972) J Mater Sci 7:1119. doi: 10.1007/BF00550193 CrossRefGoogle Scholar
  4. 4.
    Nishida I, Sakata T (1978) J Phys Chem Solids 39:499CrossRefGoogle Scholar
  5. 5.
    Filonov AB et al (1994) Phys Stat Sol B 186:209CrossRefGoogle Scholar
  6. 6.
    Ma J, Gu Y, Shi L, Chen L, Yang Z, Oian Y (2004) J Alloy Compds 376:176CrossRefGoogle Scholar
  7. 7.
    Tomasi A, Ceccato R, Nazmy M, Gialanella S (1997) Mater Sci Eng A 239–240:877Google Scholar
  8. 8.
    Mattheiss LF (1991) Phys Rev B 43:1863CrossRefGoogle Scholar
  9. 9.
    Dasgupta T, Etourneau J, Chevalier B, Matar SF, Umarji AM (2008) J Appl Phys 103:113516CrossRefGoogle Scholar
  10. 10.
    Bost MC, Mahan JE (1988) J Appl Phys 83:839CrossRefGoogle Scholar
  11. 11.
    Mattheiss LF (1991) Phys Rev B 43:12549CrossRefGoogle Scholar
  12. 12.
    Dasgupta T (2007) Ph.D dissertation, Indian Institute of Science, BangaloreGoogle Scholar
  13. 13.
    Pan ZJ, Zhang LT, Wu JS (2007) Scr Mater 56:245CrossRefGoogle Scholar
  14. 14.
    Wang S, Mingo N (2009) Appl Phys Lett 94:203109CrossRefGoogle Scholar
  15. 15.
    Gorsse S, Bellanger P, Brechet Y, Sellier E, Umarji A, Ail U, Decourt R (2011) Acta Mater 59:7425CrossRefGoogle Scholar
  16. 16.
    Gorsse S, Bauer Pereira P, Decourt R, Sellier E (2010) Chem Mater 22:988CrossRefGoogle Scholar
  17. 17.
    Abeles B (1963) Phys Rev 131:1906CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • S. Perumal
    • 1
  • S. Gorsse
    • 2
  • U. Ail
    • 2
  • B. Chevalier
    • 2
  • R. Decourt
    • 2
  • A. M. Umarji
    • 1
  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia
  2. 2.CNRS, Université de Bordeaux, ICMCBPessacFrance

Personalised recommendations