Advertisement

Journal of Materials Science

, Volume 48, Issue 1, pp 178–185 | Cite as

Multiferroic properties of multilayered BaTiO3–CoFe2O4 composites via tape casting method

  • Liangbin Hao
  • Dongxiang Zhou
  • Qiuyun FuEmail author
  • Yunxiang Hu
Article

Abstract

Multiferroic magnetoelectric (ME) BaTiO3–CoFe2O4 (BTO–CFO) ceramic composites with different thicknesses were fabricated via tape casting technique. The interfacial morphology of the composite demonstrates the presence of plate-like grains with a thickness of ~400 nm. This could be associated with the residual stresses originated from lattice mismatch and different thermal expansion coefficients between BTO and CFO layers. The dielectric constant, piezoelectric constant, and ferroelectric properties of the multilayered composite are degraded in the presence of CFO layers in comparison with those of BTO bulk. Furthermore, the dielectric constant and polarization of the composite decrease with increasing frequency. The leakage current density and magnetic remanence ratio of the composite reach up to the order of 10−6 A/cm2 and 40 %, respectively. The direct and converse ME coefficients were measured to be 8.1 μV/cm Oe and 1.1 × 10−3 G/V, respectively. Based on the converse ME effect, an electrically controlled ME inductor was designed using the composite as its core. The inductance and tunability of the inductor increase with increase of applied dc electric field.

Keywords

CoFe2O4 Leakage Current Density Piezoelectric Constant Interfacial Coupling Multilayered Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank National Natural Science Foundation of China (Grant No. 60871017/f010612) and Provincial Nature Science Foundation of Hubei in China. The authors also acknowledge the support of Shaanxi Normal University and Tsinghua University for the CME and DME coefficients measurement, respectively.

References

  1. 1.
    Yan L, Yang YD, Wang ZG, Xing ZP, Li JF, Viehland D (2009) J Mater Sci 44:5080. doi: 10.1007/s10853-009-3679-1 CrossRefGoogle Scholar
  2. 2.
    Xing ZP, Dong SX, Zhai JY, Yan L, Li JF, Viehland D (2006) Appl Phys Lett 89:112911CrossRefGoogle Scholar
  3. 3.
    Zhou JP, He HC, Shi Z, Liu G, Nan CW (2006) J Appl Phys 100:094106CrossRefGoogle Scholar
  4. 4.
    Wang L, Zuo RZ, Su HL, Shi M, Xu YD, Wu G, Yu GY (2011) J Mater Sci 46:5394. doi: 10.1007/s10853-011-5478-8 CrossRefGoogle Scholar
  5. 5.
    Vopsaroiu M, Cain MG, Sreenivasulu G, Srinivasan G, Balbashov AM (2012) Mater Lett 66:282CrossRefGoogle Scholar
  6. 6.
    Wang YJ, Cheung KF, Or SW, Chan HLW, Luo HS (2008) J Ceram Soc Jpn 116(4):540CrossRefGoogle Scholar
  7. 7.
    Wu T, Chang CM, Chung TK, Carman G (2009) IEEE Trans Magn 45:4333CrossRefGoogle Scholar
  8. 8.
    Mathe VL, Sheikh AD, Srinivasan G (2012) J Magn Magn Mater 324:695CrossRefGoogle Scholar
  9. 9.
    Zhang HF, Mark CL (2012) J Alloys Compd 513:165CrossRefGoogle Scholar
  10. 10.
    Islam RA, Rong CB, Liu JP, Priya S (2008) J Mater Sci 43:6337. doi: 10.1007/s10853-008-2912-7 CrossRefGoogle Scholar
  11. 11.
    Bush AA, Shkuratov VY, Chernykh IA, Fetisov YK (2010) Tech Phys 55(3):387CrossRefGoogle Scholar
  12. 12.
    Park CS, Priya S (2011) J Am Ceram Soc 94(4):1087CrossRefGoogle Scholar
  13. 13.
    Kambale RC, Jeong DY, Ryu J (2012) Adv Condens Matter Phys. doi: 10.1155/2012/824643
  14. 14.
    Bichurin MI, Petrov VM, Srinivasan G (2002) J Appl Phys 92(12):7681CrossRefGoogle Scholar
  15. 15.
    Li L, Lin YQ, Chen XM (2007) J Appl Phys 102:064103CrossRefGoogle Scholar
  16. 16.
    Patil D, Kim JH, Chai YS, Nam JH, Cho JH, Kim Bl, Kim KH (2011) Appl Phys Express 4:073001CrossRefGoogle Scholar
  17. 17.
    Zhou DX, Hao LB, Gong SP, Fu QY, Xue F, Jian G (2012) J Mater Sci—Mater Electron. doi: 10.1007/s10854-012-0706-9
  18. 18.
    Yang B, Li Z, Gao Y, Lin YH, Nan CW (2011) J Alloys Compd 509:4608CrossRefGoogle Scholar
  19. 19.
    Zhou JP, Guo YY, Xi ZZ, Liu P, Lin SY, Liu G, Zhang HW (2008) Appl Phys Lett 93:152501CrossRefGoogle Scholar
  20. 20.
    Zhang L, Zhai JW, Mo WF, Yao X (2010) J Am Ceram Soc 93(10):3267CrossRefGoogle Scholar
  21. 21.
    Kumaravel A, Ganesan N, Sethuraman R (2007) Smart Mater Struct 16:282CrossRefGoogle Scholar
  22. 22.
    Sawamura S, Wakiya N, Sakamoto N, Shinozaki K, Suzuki H (2008) Jpn J Appl Phys 47(9):7603CrossRefGoogle Scholar
  23. 23.
    Shvartaman VV, Alawneh F, Borisov P, Kozodaev D, Lupascu DC (2011) Smart Mater Struct 20:075006CrossRefGoogle Scholar
  24. 24.
    Kulawik J, Guzdek P, Szwagierczak D, Stoch A (2010) Compos Struct 92:2153CrossRefGoogle Scholar
  25. 25.
    Chen W, Wang ZH, Zhu W, Tan OK (2009) J Phys D 42:075421CrossRefGoogle Scholar
  26. 26.
    Zhang JX, Dai JY, So LC, Sun CL, Lo CY, Or SW, Chan HLW (2009) J Appl Phys 105:054102CrossRefGoogle Scholar
  27. 27.
    Zhou JP, Zhao W, Guo YY, Liu P, Zhang HW (2009) J Appl Phys 105:063913CrossRefGoogle Scholar
  28. 28.
    Chen SY, Zheng YX, Ye QY, Xuan HC, Cao QQ, Deng Y, Wang DH, Du YW, Huang ZG (2011) J Alloys Compd 509:8885CrossRefGoogle Scholar
  29. 29.
    Liu GX, Cui XX, Dong SX (2010) J Appl Phys 108:094106CrossRefGoogle Scholar
  30. 30.
    Lou J, Reed D, Liu M, Sun NX (2009) Appl Phys Lett 94:112508CrossRefGoogle Scholar
  31. 31.
    Fang X, Zhang N, Wang ZL (2008) Appl Phys Lett 93:102503CrossRefGoogle Scholar
  32. 32.
    Bichurin MI, Petrov VM, Srinivasan G (2003) Phys Rev B 68:054402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Liangbin Hao
    • 1
  • Dongxiang Zhou
    • 1
  • Qiuyun Fu
    • 1
    Email author
  • Yunxiang Hu
    • 1
  1. 1.Department of Electronic Science and TechnologyHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations