Journal of Materials Science

, Volume 47, Issue 23, pp 8188–8196 | Cite as

Influence of injection air pressure on the microcapillary formation within extruded plastic films

  • Jiapei Cao
  • Zhongbin XuEmail author
  • Baicun Wang
  • Rongjun Chen


This paper reports the experimental observation and numerical simulation of microcapillary formation, which was manipulated by the injection air pressure within microcapillary films (MCFs). Blown film technique was applied to produce low-voidage and high-voidage MCFs. It was demonstrated to be an effective and easy method to control both the capillary size and voidage of MCFs through adjusting injection air pressure. The relationships between the microcapillary size and voidage of 28-capillary films and the injection air pressure were investigated. Empirical equations for predicting the capillary diameter and voidage have been established. Numerical simulations of processing of both single- and 28-capillary films using Polyflow® were carried out, and the influence of injection air pressure on the microcapillary formation was confirmed. The simulation results provided an insight of capillary formation and the mechanism of this process was discussed.


Microfluidic Chip Numerical Simulation Result LLDPE Hydraulic Diameter Circumferential Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the National Natural Science Foundation of China (Grant No. 51073139) and Wenzhou Science and Technology Project (Grant No. H20100086) for the funding of this work.


  1. 1.
    Drost MK, Call C, Cuta J, Wegeng R (1997) Microscale Therm Eng 1:321CrossRefGoogle Scholar
  2. 2.
    Thorsen T, Maerkl SJ, Quake SR (2002) Science 298:580CrossRefGoogle Scholar
  3. 3.
    Zhang Z, Zhao P, Xiao G (2009) Polymer 50:5358CrossRefGoogle Scholar
  4. 4.
    Adamson DN, Mustafi D, Zhang JXJ, Zheng B, Ismagilov RF (2006) Lab Chip 6:1178CrossRefGoogle Scholar
  5. 5.
    Becker H, Locascio LE (2002) Talanta 56:267CrossRefGoogle Scholar
  6. 6.
    Tuchinskiy L (2008) Adv Eng Mater 10:219CrossRefGoogle Scholar
  7. 7.
    Canning J, Buckley E, Huntington S, Lyytikainen K (2004) Electrochim Acta 49:3581CrossRefGoogle Scholar
  8. 8.
    Truckenmuller R, Giselbrecht S, Rivron N, Gottwald E, Saile V, van den Berg A, Wessling M, van Blitterswijk C (2011) Adv Mater 23:1311CrossRefGoogle Scholar
  9. 9.
    Hallmark B, Gadala-Maria F, Mackley MR (2005) J Non-Newton Fluid 128:83CrossRefGoogle Scholar
  10. 10.
    Medina DI, Chinesta F, Mackley MR (2009) Polymer 50:3302CrossRefGoogle Scholar
  11. 11.
    Bonyadi S, Mackley M (2012) J Membr Sci 389:137CrossRefGoogle Scholar
  12. 12.
    Peng N, Teoh MM, Chung TS, Koo LL (2011) J Membr Sci 372:20CrossRefGoogle Scholar
  13. 13.
    Dorfling C, Hornung CH, Hallmark B, Beaumont R, Fovargue H, Mackley MR (2010) Sol Energ Mater Sol C 94:1207CrossRefGoogle Scholar
  14. 14.
    Hallmark B, Hornung CH, Broady D, Price-Kuehne C, Mackley MR (2008) Int J Heat Mass Transf 51:5344CrossRefGoogle Scholar
  15. 15.
    Hornung CH, Hallmark B, Hesketh RP, Mackley MR (2006) J Micromech Microeng 16:434CrossRefGoogle Scholar
  16. 16.
    Hornung CH, Hallmark B, Baumann M, Baxendale IR, Ley SV, Hester P, Clayton P, Mackley MR (2010) Ind Eng Chem Res 49:4576CrossRefGoogle Scholar
  17. 17.
    Edwards AD, Reis NM, Slater N, Mackley MR (2011) Lab Chip 11:4267CrossRefGoogle Scholar
  18. 18.
    Darton NJ, Hallmark B, James T, Agrawal P, Mackley MR, Slater N (2009) J Magn Magn Mater 321:1571CrossRefGoogle Scholar
  19. 19.
    Darton NJ, Hallmark B, Han X, Palit S, Slater N, Mackley MR (2008) Nanomed Nanotechnol Biol Med 4:19CrossRefGoogle Scholar
  20. 20.
    Medina DI, Hallmark B, Lord TD, Mackley MR (2008) J Mater Sci 43:5211. doi: 10.1007/s10853-008-2757-0 CrossRefGoogle Scholar
  21. 21.
    Zhou N, Zhang P, Wu H, Peng X (2006) J Appl Polym Sci 101:83CrossRefGoogle Scholar
  22. 22.
    Guo Q, Liu J, Chen L, Wang K (2008) Polymer 49:1737CrossRefGoogle Scholar
  23. 23.
    Lee J, Turng L, Dougherty E, Gorton P (2011) Polymer 52:1436CrossRefGoogle Scholar
  24. 24.
    Bird RB, Armstrong RC, Hassager O (1987). In: Fluid mechanics, vol 1, 2nd edn. Wiley, New YorkGoogle Scholar
  25. 25.
    Stadler FJ, Piel C, Kaschta J, Rulhoff S, Kaminsky W, Muenstedt H (2006) Rheol Acta 45:755CrossRefGoogle Scholar
  26. 26.
    Michaeli W (2003) Extrusion dies for plastics and rubber: design and engineering computations. Hanser Publishers, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jiapei Cao
    • 1
  • Zhongbin Xu
    • 1
    Email author
  • Baicun Wang
    • 1
  • Rongjun Chen
    • 2
  1. 1.Department of Chemical Engineering and Biochemical Engineering, Institute of Process EquipmentZhejiang UniversityHangzhouChina
  2. 2.Centre for Molecular Nanoscience, School of ChemistryUniversity of LeedsLeedsUK

Personalised recommendations