Journal of Materials Science

, Volume 48, Issue 3, pp 979–988 | Cite as

Thermo-mechanical and fracture properties in single-crystal silicon

  • Alex MasolinEmail author
  • Pierre-Olivier Bouchard
  • Roberto Martini
  • Marc Bernacki


Single-crystal silicon is extensively used in the semiconductor industry. Even though most of the steps during processing involve somehow thermo-mechanical treatment of silicon, we will focus on two main domains where these properties play a major role: cleaving techniques used to obtain a thin silicon layer for photovoltaic applications and MEMS. The evolution and validation of these new processes often rely on numerical simulations. The accuracy of these simulations, however, requires accurate input data for a wide temperature range. Numerous studies have been performed, and most of the needed parameters are generally available in the literature, but unfortunately, some discrepancies are observed in terms of measured data regarding fracture mechanics parameters. The aim of this article is to gather all these data and discuss the validity of these properties between room temperature and 1273 K. Particular attention is given to silicon fracture properties depending on crystallographic orientations, and to the brittle–ductile temperature transition which can strongly affect the quality of silicon layers.


Fracture Toughness Fracture Property Dislocation Velocity Crack Propagation Direction Mobile Dislocation Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank EC for the financial support for this research (SUGAR Project FP7 No. 256752). A special thanks to Guillaume Lebret.


  1. 1.
    Gordon I, Dross F, Depauw V, Masolin A, Qiu Y, Vaes J, Van Gestel D, Poortmans J (2001) Sol Energy Mater Sol Cells 95(Suppl 1):S2Google Scholar
  2. 2.
    Henley FJ (2010) In: 35th IEEE photovoltaic specialists conference (PVSC), IEEE, pp 001184–001192Google Scholar
  3. 3.
    Masolin A, Recaman Payo M (2012) WO/2012/034993Google Scholar
  4. 4.
    Hillberry BM (1975) US 3,901,423Google Scholar
  5. 5.
    Wilkes DF (1981) US 4,244,348Google Scholar
  6. 6.
    Tanielian M, Lajos R, Blackstone S (1986) US 4,582,559Google Scholar
  7. 7.
    Owens G (2005) WO/2005/122243Google Scholar
  8. 8.
    Owens G (2010) EP1782465Google Scholar
  9. 9.
    Takeguchi M, Yamamoto T, Nakano M (1990) US 4,955,357Google Scholar
  10. 10.
    Yamaguchi S (2008) US 7,351,282Google Scholar
  11. 11.
    Baer SC (2009) US 2009/0056513Google Scholar
  12. 12.
    Dross F, Robbelein J, Vandevelde B, Van Kerschaver E, Gordon I, Beaucarne G, Poortmans J (2007) Appl Phys A 89:149CrossRefGoogle Scholar
  13. 13.
    Dross F, Van Kerschaver E, Beaucarne G (2007) EP1863100Google Scholar
  14. 14.
    Dross F, Van Kerschaver E, Beaucarne G (2011) US 7,875,531Google Scholar
  15. 15.
    Qian J, Kersschot B, Masolin A, Vaes J, Frederic D, Reynaerts D (2011) In: 11th international conference of Euspen, vol 2, p 435Google Scholar
  16. 16.
    Vaes J, Masolin A, Pesquera A, Dross F (2010) In: Proceedings of SPIE, vol 7772, p 777212Google Scholar
  17. 17.
    Masolin A, Vaes J, Dross F, Poortmans J, Mertens R (2010) In: 35th IEEE photovoltaic specialists conference (PVSC), IEEE, p 002180Google Scholar
  18. 18.
    Masolin A, Vaes J, Dross F, Martini R, Rodriguez A, Poortmans J, Mertens R (2011) MRS Online Proc Libr 1323Google Scholar
  19. 19.
    Martini R, Masolin A (2012) Energy Proc 20Google Scholar
  20. 20.
    Mathew L, Jawarani D (2010) US 7,749,884Google Scholar
  21. 21.
    Rao RA, Mathew L, Saha S, Smith S, Sarkar D, Garcia R, Stout R, Gurmu A, Onyegam E, Ahn D, Xu D, Jawarani D, Fossum J, Banerjee S (2011) In: Photovoltaic specialists conference (PVSC), 2011 37th IEEE, p 001504Google Scholar
  22. 22.
    Bedell SW, Fogel KE, Lauro PA, Sadana D, Shahrjerdi D (2010) US 2010/0310775Google Scholar
  23. 23.
    Bedell SW, Fogel KE, Lauro PA, Sadana D, Shahrjerdi D (2011) WO/2011/106203Google Scholar
  24. 24.
    Bedell S, Shahrjerdi D, Hekmatshoar B, Fogel K, Lauro P, Ott J, Sosa N, Sadana D (2012) Photovoltaics 2:141CrossRefGoogle Scholar
  25. 25.
    Mason WP (1958) Physical acoustics and the properties of solids. Van Nostrand, PrincetonGoogle Scholar
  26. 26.
    Hall J (1967) Phys Rev 161(3):756–761CrossRefGoogle Scholar
  27. 27.
    Nye JF, Lindsay RB (1957) Phys Today 10(12):26CrossRefGoogle Scholar
  28. 28.
    Brantley WA (1973) J Appl Phys 44:534CrossRefGoogle Scholar
  29. 29.
    Balamane H, Halicioglu T, Tiller WA et al (1992) Phys Rev B 46(4):2250CrossRefGoogle Scholar
  30. 30.
    Haynes PD (1998) PhD thesis, Christ’s College, CambridgeGoogle Scholar
  31. 31.
    Bhushan B, Koinkar VN (1994) Appl Phys Lett 64:1653CrossRefGoogle Scholar
  32. 32.
    Bhushan B, Li X (1997) J Mater Res 12(1):54CrossRefGoogle Scholar
  33. 33.
    McSkimin H, Bond W, Buehler E, Teal G (1951) Phys Rev 83(5):1080CrossRefGoogle Scholar
  34. 34.
    Burenkov YA, Nikanorov SP (1974) Sov Phys Solid state 16(5):1496Google Scholar
  35. 35.
    Bourgeois C, Steinsland E, Blanc N, de Rooij NF (1997) In: Frequency control symposium. Proceedings of the 1997 IEEE International, p 791Google Scholar
  36. 36.
    Hopcroft M, Nix W, Kenny T (2010) J Microelectromech Syst 19:229CrossRefGoogle Scholar
  37. 37.
    Cacho F, Orain S, Cailletaud G, Jaouen H (2007) Microelectron Reliab 47:161CrossRefGoogle Scholar
  38. 38.
    Cochard J, Yonenaga I, Gouttebroze S, MHamdi M, Zhang ZL (2010) J Appl Phys 107:033512CrossRefGoogle Scholar
  39. 39.
    Dillon OW, Tsai CT, De Angelis RJ (1986) J Appl Phys 60:1784CrossRefGoogle Scholar
  40. 40.
    Moon H, Anand L, Spearing S (2001) MRS Online Proc Libr 687, Paper B9.6Google Scholar
  41. 41.
    Orowan E (1940) Proc Phys Soc 52:8CrossRefGoogle Scholar
  42. 42.
    Arsenlis A, Parks D (1999) Acta Mater 47:1597CrossRefGoogle Scholar
  43. 43.
    Alexander H, Haasen P, Frederick Seitz DT, Ehrenreich H (1969) Solid State Phys 22:27Google Scholar
  44. 44.
    Delaire F, Raphanel J, Rey C (2000) Acta Mater 48:1075CrossRefGoogle Scholar
  45. 45.
    Abeles B, Beers DS, Cody GD, Dismukes JP (1962) Phys Rev 125:44CrossRefGoogle Scholar
  46. 46.
    Glassbrenner C, Slack G (1964) Phys Rev 134(4A):A1058CrossRefGoogle Scholar
  47. 47.
    Fulkerson W, Moore JP, Williams RK, Graves RS, McElroy DL (1968) Phys Rev 167:765CrossRefGoogle Scholar
  48. 48.
    Yamamoto K, Abe T, Takasu S (1991) Jpn J Appl Phys 30(1):2423CrossRefGoogle Scholar
  49. 49.
    Yamasue E, Susa M, Fukuyama H, Nagata K (2002) J Cryst Growth 234(1):121CrossRefGoogle Scholar
  50. 50.
    Shanks H, Maycock P, Sidles P, Danielson G (1963) Phys Rev 130(5):1743CrossRefGoogle Scholar
  51. 51.
    Hull R (1999) Properties of crystalline silicon. IET, LondonGoogle Scholar
  52. 52.
    Prakash C (1978) Microelectron Reliab 18(4):333CrossRefGoogle Scholar
  53. 53.
    Okaji M (1988) Int J Thermophys 9(6):1101CrossRefGoogle Scholar
  54. 54.
    Watanabe H, Yamada N, Okaji M (2004) Int J Thermophys 25(1):221CrossRefGoogle Scholar
  55. 55.
    Okada Y, Tokumaru Y (1984) J Appl Phys 56(2):314CrossRefGoogle Scholar
  56. 56.
    Swenson CA (1983) J Phys Chem Ref Data 12:179CrossRefGoogle Scholar
  57. 57.
    St. John C (1975) Phil Mag 32(6):1193CrossRefGoogle Scholar
  58. 58.
    Brede M, Haasen P (1988) Acta Metall 36:2003CrossRefGoogle Scholar
  59. 59.
    Samuels J, Roberts S (1989) Proc R Soc Lond Ser A 421(1860):1CrossRefGoogle Scholar
  60. 60.
    Hirsch P, Roberts S, Samuels J (1989) Proc R Soc Lond Ser A 421(1860):25CrossRefGoogle Scholar
  61. 61.
    Hirsch P, Roberts S (1991) Philos Mag A 64(1):55CrossRefGoogle Scholar
  62. 62.
    George A, Michot G (1993) Mater Sci Eng A 164(1–2):118Google Scholar
  63. 63.
    Hsia K, Argon A (1994) Mater Sci Eng A 176(1–2):111Google Scholar
  64. 64.
    Warren P (1989) Scripta Metall 23(5):637CrossRefGoogle Scholar
  65. 65.
    Hirsch P, Roberts S (1997) Philos Trans R Soc Lond Ser A 355(1731):1991CrossRefGoogle Scholar
  66. 66.
    Hesketh P, Ju C, Gowda S, Zanoria E, Danyluk S (1993) J Electrochem Soc 140:1080CrossRefGoogle Scholar
  67. 67.
    Ebrahimi F, Hussain S (1995) Scripta Metall Mater 32(9):1507CrossRefGoogle Scholar
  68. 68.
    Ebrahimi F, Kalwani L (1999) Mater Sci Eng A 268(1):116CrossRefGoogle Scholar
  69. 69.
    Gilman J (1960) J Appl Phys 31(12):2208CrossRefGoogle Scholar
  70. 70.
    Jaccodine R (1963) J Electrochem Soc 110:524CrossRefGoogle Scholar
  71. 71.
    Chen CP, Leipold MH (1980) Appl Phys Lett 87(14):141912Google Scholar
  72. 72.
    Messmer C, Bilello J (1981) J Appl Phys 52(7):4623CrossRefGoogle Scholar
  73. 73.
    Chen CP, Leipold MH (1986) In: Crack growth in single-crystal silicon. Plenum Press, New York, p 285Google Scholar
  74. 74.
    Bhaduri S, Wang F (1986) J Mater Sci 21(7):2489. doi: 10.1007/BF01114295 CrossRefGoogle Scholar
  75. 75.
    Tsai Y, Mecholsky J (1991) J Mater Res 6(6):1248CrossRefGoogle Scholar
  76. 76.
    Hayashi K, Tsujimoto S, Okamoto Y, Nishikawa T (1991) J Soc Mater Sci Jpn 40(451):405CrossRefGoogle Scholar
  77. 77.
    Xin Y, Hsia K (1996) Acta Mater 44(3):845CrossRefGoogle Scholar
  78. 78.
    Hauch J, Holland D, Marder M, Swinney H (1999) Phys Rev Lett 82(19):3823CrossRefGoogle Scholar
  79. 79.
    Swadener J, Nastasi M (2002) J Mater Sci Lett 21(17):1363CrossRefGoogle Scholar
  80. 80.
    Fitzgerald A, Iyer R, Dauskardt R, Kenny T (2002) J Mater Res 17(3):683CrossRefGoogle Scholar
  81. 81.
    Tan J, Li S, Wan Y, Li F, Lu K (2003) Mater Sci Eng B 103(1):49CrossRefGoogle Scholar
  82. 82.
    Cook RF (2006) J Mater Sci 41(3):841. doi: 10.1007/s10853-006-6567-y CrossRefGoogle Scholar
  83. 83.
    Pèrez R, Gumbsch P (2000) Acta Mater 48(18–19):4517CrossRefGoogle Scholar
  84. 84.
    Tanaka M, Higashida K, Nakashima H, Takagi H, Fujiwara M (2006) Int J Fract 139(3):383CrossRefGoogle Scholar
  85. 85.
    Ding Z, Zhou S, Zhao Y (2004) Phys Rev B 70:184117CrossRefGoogle Scholar
  86. 86.
    Zhu T, Li J, Yip S (2004) Phys Rev Lett 93:205504CrossRefGoogle Scholar
  87. 87.
    Perez R, Gumbsch P (2000) Phys Rev Lett 84(23):5347CrossRefGoogle Scholar
  88. 88.
    Deegan RD, Chheda S, Patel L, Marder M, Swinney HL, Kim J, de Lozanne A (2003) Phys Rev E 67:066209CrossRefGoogle Scholar
  89. 89.
    Clarke DR (1992) In: Faber KT and Malloy K (eds) Semiconductors and semimetals. Elsevier, Amsterdam, p 79Google Scholar
  90. 90.
    Cramer T, Wanner A, Gumbsch P (1997) Phys Status Solidi A 164:R5CrossRefGoogle Scholar
  91. 91.
    Cramer T, Wanner A, Gumbsch P (2000) Phys Rev Lett 85:788CrossRefGoogle Scholar
  92. 92.
    Sherman D, Be’ery I (2004) J Mech Phys Solids 52(8):1743CrossRefGoogle Scholar
  93. 93.
    Sherman D (2005) J Mech Phys Solids 53(12):2742CrossRefGoogle Scholar
  94. 94.
    Fineberg J, Marder M (1999) Phys Rep 313:1Google Scholar
  95. 95.
    Holland D, Marder M (1999) Adv Mater 11:793CrossRefGoogle Scholar
  96. 96.
    Thomson R, Hsieh C, Rana V (1971) J Appl Phys 42:3154CrossRefGoogle Scholar
  97. 97.
    Lawn BR (1975) J Mater Sci 10:469. doi: 10.1007/BF00543692 CrossRefGoogle Scholar
  98. 98.
    Marder M (1999) Comput Sci Eng 1:48CrossRefGoogle Scholar
  99. 99.
    Bernstein N, Hess DW (2003) Phys Rev Lett 91:025501CrossRefGoogle Scholar
  100. 100.
    Coufal H (1994) J Acoust Soc Am 95(2):1158CrossRefGoogle Scholar
  101. 101.
    Xu Y, Aizawa T (1999) Phys Lett A 260(6):512CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alex Masolin
    • 1
    • 2
    Email author
  • Pierre-Olivier Bouchard
    • 3
  • Roberto Martini
    • 1
    • 2
  • Marc Bernacki
    • 3
  1. 1.KU LeuvenLeuvenBelgium
  2. 2.ImecLeuvenBelgium
  3. 3.Mines ParisTech, CEMEF-Centre de Mise en Forme des Matériaux, CNRS UMR 7635Sophia Antipolis CedexFrance

Personalised recommendations