Journal of Materials Science

, Volume 47, Issue 23, pp 8128–8133 | Cite as

Property evolution on annealing deformed 304 austenitic stainless steel

  • I. Shuro
  • H. H. Kuo
  • Y. Todaka
  • M. Umemoto


Property changes and microstructural evolution of deformed and subsequently annealed austenitic stainless steel are investigated. SUS304 samples were deformed by high pressure torsion to obtain 100 % α′ volume fraction. When plastically deformed SUS304 is annealed in the temperature range of 200–600 °C for 1 h, peak maxima in hardness, electrical resistivity, and saturation magnetization appears at 400 °C. In this study, SUS304 containing 100 % α′ was investigated on the basis of changes in microstructure and mechanical properties after annealing at the temperature of 400 °C for up to 500 h. The observed property changes are attributed to solute segregation, strain relaxation, and G phase precipitation.


Austenite Martensite Passive Film Sigma Phase Strain Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Singh J (1985) J Mater Sci 20:3157. doi: 10.1007/BF00545181 CrossRefGoogle Scholar
  2. 2.
    Rathbun RW, Matlock DK, Speer JG (2000) Scr Mater 42:887CrossRefGoogle Scholar
  3. 3.
    Lee SH, Lee JC, Choi JY, Nam WJ (2010) Met Mater Int 16:21CrossRefGoogle Scholar
  4. 4.
    Mangonon PL Jr, Thomas G (1970) Metall Trans 1:1577CrossRefGoogle Scholar
  5. 5.
    Russell KC (1984) Prog Mater Sci 28:229CrossRefGoogle Scholar
  6. 6.
    Kurc A, Kciuk M, Basiaga M (2010) Achiev Mater Manuf Eng 38:154Google Scholar
  7. 7.
    Wu XL, Tao NR, Wei QM, Jiang P, Lu J, Lu K (2007) Acta Mater 55:5768CrossRefGoogle Scholar
  8. 8.
    Suryanarayana C, Koch CC (2000) Hyperfine Interact 130:5CrossRefGoogle Scholar
  9. 9.
    Shen TD, Schwarz RB, Feng S (2007) Acta Mater 55:5007CrossRefGoogle Scholar
  10. 10.
    Cheng S, Spencer JA, Milligan WW (2003) Acta Mater 51:4505CrossRefGoogle Scholar
  11. 11.
    Schiotz J, Di Tolla FD, Jacobsen KW (1998) Nature 391:561CrossRefGoogle Scholar
  12. 12.
    Detor AJ, Schuh CA (2007) J Mater Res 22:3233CrossRefGoogle Scholar
  13. 13.
    Chen HP, Kalia RK, Kaxiras E, Lu G (2012) Phys Rev Lett. doi: 10.1103/PhysRevLett.104.155502
  14. 14.
    Zhilin L, Wei L, Juncai Q (2006) Metall Mater Trans A 37:435Google Scholar
  15. 15.
    Rutkowska-Gorczyca M, Podrez-Radziszewska M (2009) Metallurgy of Foundry Engineering 35:35Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Functional Materials EngineeringToyohashi University of TechnologyToyohashiJapan

Personalised recommendations