Advertisement

Journal of Materials Science

, Volume 47, Issue 23, pp 8035–8043 | Cite as

The distribution of carbonate in enamel and its correlation with structure and mechanical properties

  • Changqi Xu
  • Rachel Reed
  • Jeffrey P. Gorski
  • Yong Wang
  • Mary P. Walker
Article

Abstract

The correlation of carbonate content with enamel microstructure (chemical and crystal structure) and mechanical properties was evaluated via linear mapping analyses by Raman microspectroscopy and nanoindentation. Mappings started at the outer enamel surface and ended in the inner enamel near the dentin-enamel junction (DEJ) in lingual and buccal cervical and cuspal regions. The carbonate peak intensity at 1070 cm−1 gradually increased from outer to inner enamel. Moreover, the phosphate peak width, as measured by the full width at half maximum of the peak at 960 cm−1, also increased, going from ~9 cm−1 in outer enamel to ~13 cm−1 in enamel adjacent to the DEJ, indicating a decrease in the degree of crystallinity of hydroxyapatite from outer to inner enamel. In contrast, Young’s modulus decreased from 119 ± 12 to 80 ± 19 GPa across outer to inner enamel with a concomitant decrease in enamel hardness from 5.9 ± 1.4 to 3.5 ± 1.3 GPa. There were also significant correlations between carbonate content and associated crystallinity with mechanical properties. As carbonate content increased, there was an associated decrease in crystallinity and both of these changes correlated with decreased modulus and hardness. Collectively, these results suggest that enamel carbonate content and the associated change in the crystal structure of hydroxyapatite, i.e., degree of crystallinity, may have a direct effect on enamel mechanical properties. The combination of Raman microspectroscopy and nanoindentation proved to be an effective approach for evaluating the microstructure of enamel and its associated properties.

Keywords

Raman Microspectroscopy Outer Enamel Lingual Cusp Tooth Section Enamel Prism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This investigation was supported by the USPHS research grant DE021462 from the National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA. We also want to thank Dr. Ying Liu for her assistance with the statistical analyses.

References

  1. 1.
    Nanci A (2003) In: Nanci A (ed) Ten cate’s oral histology-development, structure, and function. Mosby, St LouisGoogle Scholar
  2. 2.
    Driessens FCM, Verbeeck RMH (1990) In: Driessens FCM, Verbeeck RMH (eds) Biominerals. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Brudevold F, Reda A, Aasenden R, Bakhos Y (1975) Arch Oral Biol 20:667. doi: 10.1016/0003-9969(75)90135-1 CrossRefGoogle Scholar
  4. 4.
    Braly A, Darnell LA, Mann AB, Teaford MF, Weihs TP (2007) Arch Oral Biol 52:856. doi: 10.1016/j.archoralbio.2007.03.005 CrossRefGoogle Scholar
  5. 5.
    He LH, Swain MV (2008) J Mech Behav Biomed Mater 1:18. doi: 10.1016/j.jmbbm.2007.05.001 CrossRefGoogle Scholar
  6. 6.
    Lewis G, Nyman JS (2008) J Biomed Mater Res B Appl Biomater 87:286. doi: 10.1002/jbm.b.31092 Google Scholar
  7. 7.
    Angker L, Swain MV (2006) J Mater Res 21:1893. doi: 10.1557/jmr.2006.0257 CrossRefGoogle Scholar
  8. 8.
    He LH, Swain MV (2009) J Dent 37:596. doi: 10.1016/j.jdent.2009.03.019 CrossRefGoogle Scholar
  9. 9.
    Park S, Wang DH, Zhang D, Romberg E, Arola D (2008) J Mater Sci Mater Med 19:2317. doi: 10.1007/s10856-007-3340-y CrossRefGoogle Scholar
  10. 10.
    Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP (2002) Arch Oral Biol 47:281. doi: 10.1016/S0003-9969(02)00006-7 CrossRefGoogle Scholar
  11. 11.
    Lee JJW, Morris D, Constantino PJ, Lucas PW, Smith TM, Lawn BR (2010) Acta Biomater 6:4560. doi: 10.1016/j.actbio.2010.07.023 CrossRefGoogle Scholar
  12. 12.
    An B, Wang R, Arola D, Zhang D (2012) J Mech Behav Biomed Mater 9:63. doi: 10.1016/j.jmbbm.2012.01.009 CrossRefGoogle Scholar
  13. 13.
    Sydney-Zax M, Mayer I, Deutsch D (1991) J Dent Res 70:913. doi: 10.1177/00220345910700051001 CrossRefGoogle Scholar
  14. 14.
    SonJu Clasen AB, Ruyter IE (1997) Adv Dent Res 11:523. doi: 10.1177/08959374970110042101
  15. 15.
    LeGeros RZ, Sakae T, Bautista C, Retino M, LeGeros JP (1996) Adv Dent Res 10:225. doi: 10.1177/08959374960100021801 CrossRefGoogle Scholar
  16. 16.
    Sakae T (1988) Arch Oral Biol 33:707. doi: 0003-9969(88)90003-9 CrossRefGoogle Scholar
  17. 17.
    Baena JR, Lendl B (2004) Curr Opin Chem Biol 8:534. doi: 10.1016/j.cbpa.2004.08.014 CrossRefGoogle Scholar
  18. 18.
    Pappas D, Smith BW, Winefordner JD (2000) Talanta 51:131. doi: 10.1016/s0039-9140(99)00254-4 CrossRefGoogle Scholar
  19. 19.
    Tsuda H, Arends J (1997) Adv Dent Res 11:539. doi: 10.1177/08959374970110042301 CrossRefGoogle Scholar
  20. 20.
    Weatherell JA, Robinson C, Hiller CR (1968) Caries Res 2:1. doi: 10.1159/000259538 CrossRefGoogle Scholar
  21. 21.
    Parayanthal P, Pollak FH (1984) Phys Rev Lett 52:1822. doi: 10.1103/PhysRevLett.52.1822 CrossRefGoogle Scholar
  22. 22.
    Pucéat E, Reynard B, Lécuyer C (2004) Chem Geol 205:83. doi: 10.1016/j.chemgeo.2003.12.014 CrossRefGoogle Scholar
  23. 23.
    Freeman JJ, Wopenka B, Silva MJ, Pasteris JD (2001) Calcif Tissue Int 68:156. doi: 10.1007/s002230001206 CrossRefGoogle Scholar
  24. 24.
    Tesch W, Eidelman N, Roschger P, Goldenberg F, Klaushofer K, Fratzl P (2001) Calcif Tissue Int 69:147CrossRefGoogle Scholar
  25. 25.
    Walker MP, Fricke BA (2006) In: Akay M (ed) Wiley encyclopedia of biomedical engineering. Wiley, HobokenGoogle Scholar
  26. 26.
    White SN, Paine ML, Luo W, Sarikaya M, Fong H, Yu Z et al (2000) J Am Ceram Soc 83:238. doi: 10.1111/j.1151-2916.2000.tb01181.x CrossRefGoogle Scholar
  27. 27.
    Zaslansky P, Friesem AA, Weiner S (2006) J Struct Biol 153:188. doi: 10.1016/j.jsb.2005.10.010 CrossRefGoogle Scholar
  28. 28.
    Suresh S (2001) Science 292:2447. doi: 10.1126/science.1059716 CrossRefGoogle Scholar
  29. 29.
    Yurkstas AA (1965) J Prosthet Dent 15:248. doi: 10.1016/0022-3913(65)90094-6 CrossRefGoogle Scholar
  30. 30.
    Ferrario VF, Sforza C, Zanotti G, Tartaglia GM (2004) J Dent 32:451. doi: 10.1016/j.jdent.2004.02.009 CrossRefGoogle Scholar
  31. 31.
    Spears IR (1997) J Dent Res 76:1690. doi: 10.1177/00220345970760101101 CrossRefGoogle Scholar
  32. 32.
    Saber-Samandari S, Gross KA (2009) Acta Biomater 5:2206. doi: 10.1016/j.actbio.2009.02.009 CrossRefGoogle Scholar
  33. 33.
    Darnell LA, Teaford MF, Livi KJT, Weihs TP (2010) Am J Phys Anthropol 141:7. doi: 10.1002/ajpa.21126 Google Scholar
  34. 34.
    Zapanta-Legeros R (1965) Nature 206:403. doi: 10.1038/206403a0 CrossRefGoogle Scholar
  35. 35.
    Gron P, Spinelli M, Trautz O, Brudevold F (1963) Arch Oral Biol 8:251. doi: 10.1016/0003-9969(63)90016-5 CrossRefGoogle Scholar
  36. 36.
    Pan H, Darvell BW (2010) Cryst Growth Des 10:845. doi: 10.1021/cg901199h CrossRefGoogle Scholar
  37. 37.
    Sternlieb MP, Pasteris JD, Williams BR, Krol KA, Yoder CH (2010) Polyhedron 29:2364. doi: 10.1016/j.poly.2010.05.001 CrossRefGoogle Scholar
  38. 38.
    Xu C, Karan K, Yao X, Wang Y (2009) J Raman Spectrosc 40:1780. doi: 10.1002/jrs.2320 CrossRefGoogle Scholar
  39. 39.
    LeGeros RZ, Trautz OR, LeGeros JP, Klein E, Shirra WP (1967) Science 155:1409. doi: 10.1126/science.155.3768.1409 CrossRefGoogle Scholar
  40. 40.
    Teraoka K, Ito A, Maekawa K, Onuma K, Tateishi T, Tsutsumi S (1998) J Dent Res 77:1560. doi: 10.1177/00220345980770071201 CrossRefGoogle Scholar
  41. 41.
    Robinson C, Kirkham J, Brookes SJ, Bonass WA, Shore RC (1995) Int J Dev Biol 39:145Google Scholar
  42. 42.
    Margolis HC, Beniash E, Fowler CE (2006) J Dent Res 85:775. doi: 10.1177/154405910608500902 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Changqi Xu
    • 1
  • Rachel Reed
    • 1
  • Jeffrey P. Gorski
    • 1
  • Yong Wang
    • 1
  • Mary P. Walker
    • 1
  1. 1.Department of Oral BiologyUniversity of Missouri-Kansas City School of DentistryKansas CityUSA

Personalised recommendations