Journal of Materials Science

, Volume 47, Issue 24, pp 8404–8418

Wetting of calcium fluoride by liquid metals

  • Shmuel Barzilai
  • Natalya Froumin
  • Eugene Glickman
  • David Fuks
  • Nahum Frage
HTC 2012


The results of wetting experiments for the CaF2/Me and CaF2/Me–Ti systems (Me = Cu, Ge, Al, In, Ga, Sn, and Au) are presented and discussed. It was found that pure metals do not wet the CaF2 substrate, while a small quantity of Ti added to the melt improves the wetting. The effect of Ti depends on its thermodynamic activity in the melts. According to the thermodynamic analysis and experimental observations, Ti dissolved in the metals does not react with the substrate to form any new condensed phase at the interface and its effect cannot be attributed to the “reactive wetting” phenomenon. Density functional theory (DFT) was applied to focus on the nature of chemical bonding between the atoms in the melt and the surface of the substrate in these systems. It was demonstrated that partly filled d-states of Ti stimulate its adsorption onto F ions. Ab initio calculations show that Ti may segregate to the interface, decreasing the energy of CaF2/Me–Ti system. Based on the results of thermodynamic and DFT analyses, it is proposed that Ti segregation at the interface may be considered as the source of the improved wetting.


  1. 1.
    Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Pergamon, BostonGoogle Scholar
  2. 2.
    Howie JM (1993) Int Mater Rev 38:257CrossRefGoogle Scholar
  3. 3.
    Marin J, Olivares L, Ordonez S, Martinez V (2003) Mater Sci Forum 415–418:487CrossRefGoogle Scholar
  4. 4.
    Rado C, Drevet B, Eustathopoulos N (2000) Acta Mater 48:4483CrossRefGoogle Scholar
  5. 5.
    Froumin N, Frage N, Polak M, Dariel MP (2000) Acta Mater 48:4483CrossRefGoogle Scholar
  6. 6.
    Mortimer DA, Nicholas M (1973) J Mater Sci 8:640. doi:10.1007/BF00561219 CrossRefGoogle Scholar
  7. 7.
    Kharlamov AI, Loichenko SV, Nizhenko VI, Kirillova NV, Floka LI (2001) Met Ceram 40:65CrossRefGoogle Scholar
  8. 8.
    Muolo ML, Ferrera E, Novakovic R, Passerone A (2003) Scripta Mater 48:191CrossRefGoogle Scholar
  9. 9.
    Thermodynamic Database SSUB3, version 3.1 (2001), produced by Scientific Group Themodata Europ, Foundation of the Computational Thermodynamics, Stockholm, SwedenGoogle Scholar
  10. 10.
    Krasovsky VP (1991) In: Naidich YV (ed) Surface properties of melts and solids and their use in materials science. Naukova Dumka, Kiev, p 120 (in Russian)Google Scholar
  11. 11.
    Krasovsky VP, Fenochka BV, Chuvashov YuN (1992) Adgez Rasplav Paika Mater 28:26Google Scholar
  12. 12.
    Naidich Y, Krasovsky VP (1998) J Mater Sci Lett 17:683CrossRefGoogle Scholar
  13. 13.
    Naidich Y, Krasovsky VP (1998) In: Eustathopoulos N, Sobczak N (eds) Proceedings of the international conference HTC-97. Foundry Research Institute, Krakow, pp 87–89Google Scholar
  14. 14.
    Naidich Y, Krasovsky VP (1999) Br Ceram Proc 60:331Google Scholar
  15. 15.
    Naidich YV (2000) Powder Metall Met Ceram 39:355CrossRefGoogle Scholar
  16. 16.
    Krasovsky VP, Naidich YV (2001) Capillary properties of alloys containing chemically active metals in contact with fluoride refractories. Trans JWRI 30:61–68Google Scholar
  17. 17.
    Krasovsky VP, Naidich YV (2002) Powder Metall Met Ceram 41:72CrossRefGoogle Scholar
  18. 18.
    Krasovsky VP, Naidich YV, Krasovskaya NA (2003) Surface tension and density of copper-titanium alloys. Alloys 4:18–24 (in Russian)Google Scholar
  19. 19.
    Kohn W, Vashishta P (1983) In: Lundqvist S, March NH (eds) Theory of the inhomogeneous electron gas. Plenum, New York, pp 79–147Google Scholar
  20. 20.
    Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974CrossRefGoogle Scholar
  21. 21.
    Schwarz K, Blaha P, Madsen GKH (2002) Comput Phys Commun 147:71CrossRefGoogle Scholar
  22. 22.
    Cottenier S (2004) Density functional theory and the family of (L) APW methods: a step-by-step introduction. ISBN 90-807215-1-4.
  23. 23.
    Barzilai S, Argaman N, Froumin N, Fuks D, Frage N (2008) Appl Phys A 93:379CrossRefGoogle Scholar
  24. 24.
    Barzilai S, Argaman N, Froumin N, Fuks D, Frage N (2009) The effect of Me–Ti inter-atomic interactions on wetting in CaF2/(Me–Ti) systems: Ab initio considerations. Surf Sci 603:2096–2101CrossRefGoogle Scholar
  25. 25.
    Barzilai S, Aizenshtein M, Lomberg M, Froumin N, Frage N (2008) J Alloys Compd 452:154CrossRefGoogle Scholar
  26. 26.
    Reiter G (1992) Phys Rev Lett 68:75CrossRefGoogle Scholar
  27. 27.
    Bischof J, Scherer D, Herminghaus S, Leiderer P (1996) Phys Rev Lett 77:1536CrossRefGoogle Scholar
  28. 28.
    Levi G, Kaplan WD (2003) Acta Mater 51:2793CrossRefGoogle Scholar
  29. 29.
    Saiz E, Tomsia AP, Cannon RM (1998) Acta Mater 46:2349Google Scholar
  30. 30.
    Champion JA, Keene BJ, Sillwood JM (1969) J Mater Sci 4:39. doi:10.1007/BF00555046 CrossRefGoogle Scholar
  31. 31.
    Barzilai S, Aizenshtein M, Lomberg M, Froumin N, Frage N (2007) Solid State Sci 9:338CrossRefGoogle Scholar
  32. 32.
    West RC (ed) (1976) Handbook of chemistry and physics, 56th edn. CRC Press, Boca Raton, pp 1676–1975Google Scholar
  33. 33.
    Nikolaenko YV, Batalin GN, Beloborodova EA, Vorobey YV, Zhyravlev VS (1985) Russ J Phys Chem 59:417Google Scholar
  34. 34.
    Froumin N, Barzilai S, Aizenshtein M, Lomberg M, Frage N (2008) Mater Sci Eng A 495:181CrossRefGoogle Scholar
  35. 35.
    Barzilai S, Lomberg M, Aizenshtein M, Froumin N, Frage N (2010) Mater Sci 45:2085CrossRefGoogle Scholar
  36. 36.
    Nizhenko VI, Floka LI (1981) Surface tension of liquid metals and alloys. Metallurgy, Moscow (in Russian)Google Scholar
  37. 37.
    Alfredsson M, Catlow CRA (2004) Surf Sci 561:43CrossRefGoogle Scholar
  38. 38.
    Krischok S, Stracke P, Hofft O, Kempter V, Zhukovskii YF, Kotomin EA (2006) Surface Scie 600:3815CrossRefGoogle Scholar
  39. 39.
    Shi H, Eglitis RI, Borstel G (2005) Phys Rev B 72:45109-1Google Scholar
  40. 40.
    Fuks D, Dorfman S, Zhukovskii YuF, Kotomin EA, Stoneham AM (2002) Surf Sci 499:24CrossRefGoogle Scholar
  41. 41.
    Causà M, Dovesi R, Pisani C, Roetti C (1986) Surf Sci 175:551CrossRefGoogle Scholar
  42. 42.
    Shi H, Eglitis RI, Borstel G (2005) Phys Status Solidi B 242:2041CrossRefGoogle Scholar
  43. 43.
    Barzilai S, Argaman N, Froumin N, Fuks D, Frage N (2008) Surf Sci 602:1517CrossRefGoogle Scholar
  44. 44.
    Zhuravlev VS, Turchanin MA (1997) Powder Metall Met Ceram 36:141CrossRefGoogle Scholar
  45. 45.
    Glickman E, Fuks D, Frage N, Barzilai S, Froumin N (2012) Appl Phys 106:181CrossRefGoogle Scholar
  46. 46.
    Howie J (1997) Interfaces in materials. Wiley Interscience, New YorkGoogle Scholar
  47. 47.
    Adamson A (1979) Physical chemistry of surfaces. Wiley Interscience, New YorkGoogle Scholar
  48. 48.
    Miracle DB, Wilks GB, Dahlman AG, Dahlman JE (2011) Acta Mater 59:7840CrossRefGoogle Scholar
  49. 49.
    Sobczak N, Nowak R, Radziwill W, Budzioch J, Glenz A (2008) Mater. Sci Engin A 495:43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Shmuel Barzilai
    • 1
  • Natalya Froumin
    • 2
  • Eugene Glickman
    • 2
  • David Fuks
    • 2
  • Nahum Frage
    • 2
  1. 1.NRC-NegevBeershebaIsrael
  2. 2.Department of Material EngineeringBen-Gurion University of the NegevBeershebaIsrael

Personalised recommendations