Journal of Materials Science

, Volume 47, Issue 20, pp 7235–7253 | Cite as

Room temperature fracture processes of a near-α titanium alloy following elevated temperature exposure



Near-α titanium alloys are used at higher temperatures than any other class of titanium alloys. As a consequence of thermal exposure, these components may develop locally elevated oxygen concentrations at the exposed surface which can negatively impact ductility and resistance to fatigue crack initiation. In this work, monotonic and fatigue fracture mechanisms of Ti–6Al–2Sn–4Zr–2Mo–0.1Si samples exposed to laboratory air at 650 °C for 420 h were identified by means of a combination of quantitative tilt fractography, metallographic sectioning, and electron backscatter diffraction. These mechanisms were compared and contrasted with those operative during similar tests performed on material is the as-received condition with uniform oxygen content. While faceted fracture was not observed during quasi-static loading of virgin material, locally elevated concentrations of oxygen near the surfaces of exposed samples were shown to change the fracture mode from ductile, microvoid coalescence to brittle facet formation and grain boundary separation at stresses below the macroscopic yield point. Similar features and an increased propensity for facet formation were observed during cyclic loading of exposed samples. The effects of this time-dependent degradation on monotonic and cyclic properties were discussed in the context of the effect of oxygen on crack initiation and propagation mechanisms.



This work was performed as part of the in-house research activities of the Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RXLM, Wright Patterson Air Force Base, OH. The financial support of the Air Force Office of Scientific Research through Task No. 09RX24COR, Dr. David Stargel, Program Manager, is gratefully acknowledged. Two of the authors were partially supported under onsite Air Force contracts FA8650-07-D-5800 (ALP), Dr. Ali Sayir, Program Manager, and FA8650-09- D-5223 (WJP) during the time this work was completed.


  1. 1.
    Srinadh KVS, Singh V (2004) Bull Mater Sci 27:347CrossRefGoogle Scholar
  2. 2.
    Welsch G, Bunk W (1982) Metall Trans A 13:889CrossRefGoogle Scholar
  3. 3.
    Williams JC, Sommer AW, Tung PP (1972) Metall Trans 3:2979CrossRefGoogle Scholar
  4. 4.
    Shamblen CE, Redden TK (1968) In: Jaffee RI, Promisel NE (eds) The science, technology and application of titanium. Pergamon Press, New York, p 199Google Scholar
  5. 5.
    Shenoy RN, Unnam J, Clark RK (1986) Oxid Met 26:105CrossRefGoogle Scholar
  6. 6.
    Mahoney MW, Paton NE (1978) Metall Trans A 9:1497CrossRefGoogle Scholar
  7. 7.
    Bache MR, Evans WJ, Davies HM (1997) J Mater Sci 32:3435. doi:10.1023/A:1018624801310 CrossRefGoogle Scholar
  8. 8.
    Sinha V, Mills MJ, Williams JC (2006) Metall Trans 37:2015CrossRefGoogle Scholar
  9. 9.
    Pilchak AL, Williams REA, Williams JC (2010) Metall Trans 41:106CrossRefGoogle Scholar
  10. 10.
    Bantounas I, Dye D, Lindley TC (2009) Acta Mater 57:3584CrossRefGoogle Scholar
  11. 11.
    Pilchak AL, Williams JC (2010) Metall Mater Trans A 41:22CrossRefGoogle Scholar
  12. 12.
    Ward-Close CM, Beevers CJ (1980) Metall Mater Trans A 11:1007CrossRefGoogle Scholar
  13. 13.
    Sarrazin-Baudoux C, Lesterlin S, Petit J (1996) Titanium 95(2):1895Google Scholar
  14. 14.
    Shiveley AR, Shade PA, Pilchak AL, Tiley JS, Kerns R (2011) J Microsc 244:181CrossRefGoogle Scholar
  15. 15.
    Pilchak AL, Shiveley AR, Tiley JS, Ballard DL (2011) J Microsc 244:38CrossRefGoogle Scholar
  16. 16.
    Themelis G, Chikwembani S, Weerman J (1990) Mater Charact 24:27CrossRefGoogle Scholar
  17. 17.
    Slavik DC, Wert JA, Gangloff RP (1993) J Mater Res 8:2482CrossRefGoogle Scholar
  18. 18.
    Sinha V, Mills MJ, Williams JC (2007) J Mater Sci 42:8334. doi:10.1007/s10853-006-0252-z CrossRefGoogle Scholar
  19. 19.
    McReynolds KS, Tamirisakandala S (2011) Metall Mater Trans A 42:1732CrossRefGoogle Scholar
  20. 20.
    Brockman RA, Pilchak AL, Porter WJ, John R (2011) Scripta Materialia 65:513CrossRefGoogle Scholar
  21. 21.
    Parthasarathy TA, Porter WJ, Boone S, John R, Martin PL (2011) Scripta Materialia 65:420CrossRefGoogle Scholar
  22. 22.
    Beachem CD, Pelloux RMN (1965) Fracture toughness testing and its applications. ASTM STP 381, p 210Google Scholar
  23. 23.
    Mahajan Y, Margolin H (1982) Met Trans A 13:257CrossRefGoogle Scholar
  24. 24.
    Jago G, Bechet J, Bathis C (1996) Titanium 95(2):1203Google Scholar
  25. 25.
    Pilchak AL, Williams JC (2011) Metall Mater Trans A 42:1000CrossRefGoogle Scholar
  26. 26.
    Chesnutt JC, Spurling RA (1977) Met Trans A 8:216CrossRefGoogle Scholar
  27. 27.
    Van Stone RH, Cox TB (1976) Fractography—microscopic cracking processes. ASTM STP 600, p 5Google Scholar
  28. 28.
    Van Stone RH, Low JR Jr, Shannon JL Jr (1978) Met Trans A 9:539CrossRefGoogle Scholar
  29. 29.
    Chesnutt JC, Williams JC (1977) Met Trans A 8A:514CrossRefGoogle Scholar
  30. 30.
    Ro YJ, Agnew SR, Gangloff RP (2005) Scripta Materialia 52:531CrossRefGoogle Scholar
  31. 31.
    Bowen AW (1975) Acta Metall 23:1401CrossRefGoogle Scholar
  32. 32.
    Salem AA, Glavicic MG, Semiatin SL (2008) Mater Sci Eng A 494:350CrossRefGoogle Scholar
  33. 33.
    Williams JC (1973) In: Jaffee RI, Burte HM (eds) Titanium science and technology. Plenum Press, New York, p 1454Google Scholar
  34. 34.
    Lütjering G, Williams JC (2003) Titanium. Springer, New YorkGoogle Scholar
  35. 35.
    Zeng L, Bieler TR (2005) Mater Sci Eng A 392:403CrossRefGoogle Scholar
  36. 36.
    Pilchak AL, Williams JC (2009) Metall Mater Trans A 40:2603CrossRefGoogle Scholar
  37. 37.
    Larson F, Zarkades A (1974) Metals and Ceramics Information Center Report 20:1Google Scholar
  38. 38.
    Davidson DL, Eylon D (1980) Metall Mater Trans A 11:837CrossRefGoogle Scholar
  39. 39.
    Wagner L, Gregory JK, Gysler A, Lütjering G (1986) In: Ritchie RO, Lankford J (eds) Small fatigue cracks, Proceedings of the second engineering foundation international conference/workshop, Metallurgical Society, Santa Barbara, CA, pp 117–127Google Scholar
  40. 40.
    Pilchak AL, Bhattacharjee A, Rosenberger AH, Williams JC (2009) Int J Fatigue 31:989CrossRefGoogle Scholar
  41. 41.
    Evans WJ, Jones JP, Whitaker MT (2005) Int J Fatigue 27:1244CrossRefGoogle Scholar
  42. 42.
    Sarrazin C, Chiron R, Lesterlin S, Petit J (1994) Fatigue Fract Eng Mater Struct 17:1383CrossRefGoogle Scholar
  43. 43.
    Larsen JM (1987) The effects of slip character and crack closure on the growth of small fatigue cracks in titanium-aluminum alloys, PhD Dissertation, Carnegie Mellon University (approved for public release in 1990)Google Scholar
  44. 44.
    Liu Z, Welsch G (1988) Metal Trans A 19:527CrossRefGoogle Scholar
  45. 45.
    Ravichandran KS (1997) Metall Mater Trans A 28:149CrossRefGoogle Scholar
  46. 46.
    Ravichandran KS, Larsen JM (1997) Metall Mater Trans A 28:157CrossRefGoogle Scholar
  47. 47.
    Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge University Press, New York, pp 541–568Google Scholar
  48. 48.
    Santus C, Taylor D (2009) Int J Fatigue 31:1356CrossRefGoogle Scholar
  49. 49.
    Sinha V, Mills MJ, Williams JC (2004) Metall Mater Trans A 35:3141CrossRefGoogle Scholar
  50. 50.
    Jha SK, Caton MJ, Larsen JM (2007) Mater Sci Eng A 468–470:23Google Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2012

Authors and Affiliations

  1. 1.Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright Patterson Air Force BaseUSA
  2. 2.University of Dayton Research InstituteDaytonUSA

Personalised recommendations