Advertisement

Journal of Materials Science

, Volume 48, Issue 1, pp 81–94 | Cite as

Integral approach for production of thermoplastics microparts by injection moulding

  • T. V. ZhiltsovaEmail author
  • M. S. A. Oliveira
  • J. A. Ferreira
Review

Abstract

Over the last decades, microinjection moulding of thermoplastics has gained a pertinent place on the market of electronic equipment and a broad range of the mechanical aids. However, when size of component drops to the micro-level, the assumptions of the conventional injection moulding cease to describe complex rheological and thermo-mechanical behaviour of the polymer in the microcavity. Miniaturization implies a number of challenges which could only overcome by a series of profound modifications of the conventional injection moulding machine and tools. In the scope of this review, a brief discussion of the strategies applied for adaptation of the conventional injection moulding process to microscale will be introduced. Further, a particular attention will be given to the process/tool/polymer interaction and its influence on the quality signatures of micromoulded parts. In addition an overview of the rheological models of the polymer flow at microcavities and the numerical simulation of the microinjection moulding will then be addressed. Quality evaluation of the micromoulded parts require considering both polymer morphology assessment and final mechanical properties. At microscale, the acquisition of the latter is unlikely by means of conventional mechanical testing, therefore, a brief summary of the mechanical testing for micropolymeric parts will be presented. In order to further evaluate the quality signatures of micromoulded parts an overview of the combined thermo-rheological and structural analysis to link processing history and mechanical solicitations of the part to its short- and long-term performance is also presented here.

Keywords

Injection Moulding Mould Temperature Acrylonitrile Butadiene Styrene Mould Insert Polymer Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AFM

Atomic force microscopy

AMI

Autodesk® Mouldflow® Insight

DLC

Diamond-like carbon

DMA

Dynamical mechanical analysis

DOE

Design of experiments

IDDM

Interpolated domain decomposition method

HTRS

Hybrid thermo-rheological structural analysis

LIGA

Lithographie Galvanoformung Abformung

μEDM

Micro-electric discharge machining

μIM

Microinjection moulding

μ-level

Micro-level

OFAT

One factor at time

SFM

Scanning force microscopy

SPH

Smooth particle hydrodynamic

WEDG

Wire electro discharge grinding

WLF

Williams–Landel–Ferry

ABS

Acrylonitrile butadiene styrene

COC

Cyclic olefin copolymer

HDPE

High density polyethylene

PBT

Polybutylene terephthalate

PC

Polycarbonate

PEEK

Polyether ether ketone

PMMA

Poly(methyl methacrylate)

POM

Polyoxymethylene

PP

Polypropylene

List of symbols

Er

Reduced modulus

H

Hardness

Tg

Glass transition temperature

Tm

Mould temperature

Tmelt

Melt temperature

Notes

Acknowledgements

The authors acknowledge the support of Fundação para a Ciência e Tecnologia through the PhD Individual Grant SFRH/BP/45585/2008.

References

  1. 1.
    Mohren PWM, Menges G (eds) (2001) How to make injection molds. Library of congress cataloging-in-publication data, 3rd edn. Hanser Gardner Publications, Inc., CincinnatiGoogle Scholar
  2. 2.
    Giboz J, Copponnex T, Mélé P (2007) J Micromech Microeng 17(6):96. doi: 10.1088/0960-1317/17/6/R02 CrossRefGoogle Scholar
  3. 3.
    Piotter V, Bauer W, Hanemann T, Heckele M, Müller C (2008) Microsyst Technol 14(9):1599. doi: 10.1007/s00542-008-0572-9 CrossRefGoogle Scholar
  4. 4.
    Whiteside B (2003) Plast Rubber Compos 32(6):231. doi: 10.1179/146580103225002650 CrossRefGoogle Scholar
  5. 5.
    Yao D, Kim B (2002) J Micromech Microeng 12(5):604. doi: 10.1088/0960-1317/12/5/314 CrossRefGoogle Scholar
  6. 6.
    Chen C, Chen S, Liaw W, Chien R (2008) Eur Polym J 44(6):1891. doi: 10.1016/j.eurpolymj.2008.03.007 CrossRefGoogle Scholar
  7. 7.
    Mnekbi C, Vincent M, Agassant J (2010) Int J Mater Form 3:539. doi: 10.1007/s12289-010-0826-9 CrossRefGoogle Scholar
  8. 8.
    Tofteberg T (2010) Injection molding of microfeatured polymer components. University of OsloGoogle Scholar
  9. 9.
    Sha B, Dimov S, Griffiths C, Packianather M (2007) J Mater Process Technol 183(2–3):284. doi: 10.1016/j.jmatprotec.2006.10.019 CrossRefGoogle Scholar
  10. 10.
    Sha B, Dimov S, Griffiths C, Packianather M (2007) Int J Adv Manuf Technol 33(1):147. doi: 10.1007/s00170-006-0579-2 CrossRefGoogle Scholar
  11. 11.
    Theilade U, Hansen H (2007) Int J Adv Manuf Technol 33(1):157. doi: 10.1007/s00170-006-0732-y CrossRefGoogle Scholar
  12. 12.
    Lee B, Kim D, Kwon T (2004) Microsyst Technol 10(6):531. doi: 10.1007/s00542-004-0387-2 CrossRefGoogle Scholar
  13. 13.
    Kalima V et al (2007) Opt Mater 30(2):285. doi: 10.1016/j.optmat.2006.11.046 CrossRefGoogle Scholar
  14. 14.
    Zhao J, Mayes R, Chen G, Xie H, Chan H (2003) Polym Eng Sci 43(9):1542. doi: 10.1002/pen.10130 CrossRefGoogle Scholar
  15. 15.
    Attia U, Alcock J (2009) Microsyst Technol 15(12):1861. doi: 10.1007/s00542-009-0923-1 CrossRefGoogle Scholar
  16. 16.
    Zhang H, Ong N, Lam Y (2008) Int J Adv Manuf Technol 37(11):1105. doi: 10.1007/s00170-007-1060-6 CrossRefGoogle Scholar
  17. 17.
    Liou A, Chen R (2006) Int J Adv Manuf Technol 28(11):1097. doi: 10.1007/s00170-004-2455-2 CrossRefGoogle Scholar
  18. 18.
    Xie L, Ziegmann G (2009) Microsyst Technol 15(9):1427. doi: 10.1007/s00542-009-0904-4 CrossRefGoogle Scholar
  19. 19.
    Xie L, Ziegmann G (2009) J Alloys Compd 509(2):226. doi: 10.1016/j.jallcom.2010.09.051 CrossRefGoogle Scholar
  20. 20.
    Xie L, Ziegmann G, Hlavac M, Wittmer R (2009) Microsyst Technol 15(7):1031. doi: 10.1007/s00542-009-0877-3 CrossRefGoogle Scholar
  21. 21.
    Attia U, Marson S, Alcock J (2009) Microfluid Nanofluid 7(1):1. doi: 10.1007/s10404-009-0421-x CrossRefGoogle Scholar
  22. 22.
    Bibber D (2004) In: ANTEC 2004 Plastics: Annual Technical Conference, Chicago, USA, May 16–20, 2004, Society of Plastics Engineers, p 3703Google Scholar
  23. 23.
    Dr. Boy GmbH & Co (2011) BOY XS—Ultra-compact injection moulding machines for micro and single-cavity injection moulding. http://dr-boy.de/de/product/boy-xs/. Accessed 14 Aug 2011
  24. 24.
    Michaeli W, Spennemann A, Gärtner R (2002) Microsyst Technol 8(1):55. doi: 10.1007/s00542-001-0143-9 CrossRefGoogle Scholar
  25. 25.
    Chang P, Hwang S, Lee H, Huang D (2007) J Mater Process Technol 184(1–3):163. doi: 10.1016/j.jmatprotec.2006.11.018 CrossRefGoogle Scholar
  26. 26.
  27. 27.
    50 m-m (2011) Männer/solutions for plastics http://www.maenner-group.com/text/191/en/jump,191/hot-runner/about-maenner/the-maenner-company.html. Accessed 17 Aug 2011
  28. 28.
    Giboz J, Copponnex T, Mélé P (2009) J Micromech Microeng 19(2):1. doi: 10.1088/0960-1317/19/2/025023 CrossRefGoogle Scholar
  29. 29.
    Pouzada A, Ferreira E, Pontes A (2006) Polym Test 25(8):1017. doi: 10.1016/j.polymertesting.2006.06.009 CrossRefGoogle Scholar
  30. 30.
    Fu G, Loh N, Tor S, Tay B, Murakoshi Y, Maeda R (2006) Microsyst Technol 12(6):554. doi: 10.1007/s00542-005-0071-1 CrossRefGoogle Scholar
  31. 31.
    Griffiths C, Dimov S, Pham D (2006) In: 4M2006 International Conference on multi-material micro manufacture, Grenoble, France, 20–22 Sept 2006Google Scholar
  32. 32.
    Neto VF, Vaz R, Oliveira MSA, Grácio J (2009) J Mater Process Technol 209(2):1085. doi: 10.1016/j.jmatprotec.2008.03.012 CrossRefGoogle Scholar
  33. 33.
    Griffiths C, Dimov S, Brousseau E, Chouquet C, Gavillet J, Bigot S (2008) Paper presented at the 4M2008 International conference on multi-material micro manufacture, Cardiff, UK, 09–11 Sept 2008Google Scholar
  34. 34.
    Navabpour P, Teer D, Hitt D, Gilbert M (2006) Surf Coat Technol 201(6):3802. doi: 10.1016/j.surfcoat.2006.06.042 CrossRefGoogle Scholar
  35. 35.
    Grave A, Eriksson T, Hansen H (2007) In: 4M2007 Borovets BulgariaGoogle Scholar
  36. 36.
    Yu L, Koh C, Lee L, Koelling K, Madou M (2002) Polym Eng Sci 42(5):871. doi: 10.1002/pen.10998 CrossRefGoogle Scholar
  37. 37.
    Wu C, Liang W (2005) Polym Eng Sci 45(7):1021. doi: 10.1002/pen.20369 CrossRefGoogle Scholar
  38. 38.
    Michaeli W, Rogalla A, Ziegmann C (2000) Macromol Mater Eng 279(1):42. doi: 10.1002/1439-2054(20000601)279:1<42:AID-MAME42>3.0.CO;2-P CrossRefGoogle Scholar
  39. 39.
    Rötting O, Röpke W, Becker H, Gärtner C (2002) Microsyst Technol 8(1):32. doi: 10.1007/s00542-002-0106-9 CrossRefGoogle Scholar
  40. 40.
    Fleischer J, Halvadjiysky G, Haupt S (2008) Microsyst Technol 14(9):1367. doi: 10.1007/s00542-007-0529-4 CrossRefGoogle Scholar
  41. 41.
    Hormes J, Gottert J, Lian K, Desta Y, Jian L (2003) Nucl Instrum Methods Phys Res B 199:332. doi: 10.1016/S0168-583X(02)01571-9 CrossRefGoogle Scholar
  42. 42.
    Despa M, Kelly K, Collier J (1999) Microsyst Technol 6(2):60. doi: 10.1007/s005420050176 CrossRefGoogle Scholar
  43. 43.
    Fea Munnik (2003) Microelectron Eng 67–68:96. doi: 10.1016/s0167-9317(03)00064-9 Google Scholar
  44. 44.
    Meyer P, Schulz J, Hahn L, Saile V (2008) Microsyst Technol 14(9):1491. doi: 10.1007/s00542-007-0503-1 CrossRefGoogle Scholar
  45. 45.
    Hirata Y (2003) Nucl Instrum Methods Phys Res B 208:21. doi: 10.1016/s0168-583x(03)00632-3 CrossRefGoogle Scholar
  46. 46.
    Dea Kim (2006) Polym Eng Sci 46(4):416. doi: 10.1002/pen.20466 CrossRefGoogle Scholar
  47. 47.
    Watt F (1999) Nucl Instrum Methods Phys Res B 158(1–4):165. doi: 10.1016/s0168-583x(99)00513-3 CrossRefGoogle Scholar
  48. 48.
    Qu W, Wenzel C, Jahn A, Zeidler D (1998) In: Optoelectronic and microelectronic materials device, Perth, WA, Australia, p 380Google Scholar
  49. 49.
    Yang R, Jiang J, Meng W, Wang W (2006) Microsyst Technol 12(6):545. doi: 10.1007/s00542-005-0073-z CrossRefGoogle Scholar
  50. 50.
    Zhang J, Tan K, Hong G, Yang L, Gong H (2001) J Micromech Microeng 11(1):20. doi: 10.1088/0960-1317/11/1/304 CrossRefGoogle Scholar
  51. 51.
    Heckele M, Schomburg W (2004) J Micromech Microeng 14(3):1. doi: 10.1088/0960-1317/14/3/R01 CrossRefGoogle Scholar
  52. 52.
    Chien R, Jong W, Chen S (2005) J Micromech Microeng 15(8):1389. doi: 10.1088/0960-1317/15/8/003 CrossRefGoogle Scholar
  53. 53.
    Li Y, Minoru S, Kazuhiro H (2004) Opt Laser Eng 41(3):545. doi: 10.1016/s0143-8166(03)00026-5 CrossRefGoogle Scholar
  54. 54.
    Franssila S (ed) (2004) Introduction to microfabrication. Wiley, ChichesterGoogle Scholar
  55. 55.
    Masuzawa T (2000) CIRP Ann Manuf Technol 49(2):473. doi: 10.1016/s0007-8506(07)63451-9 CrossRefGoogle Scholar
  56. 56.
    Uhlmann E, Piltz S, Doll U (2005) J Mater Process Technol 167(2–3):488. doi: 10.1016/j.jmatprotec.2005.06.013 CrossRefGoogle Scholar
  57. 57.
    Davim J, Jackson M (eds) (2009) Nano and micromachining. Wiley-ISTE, LondonGoogle Scholar
  58. 58.
    Fleischer J, Kotschenreuther J (2007) Int J Adv Manuf Technol 33(1):75. doi: 10.1007/s00170-006-0596-1 CrossRefGoogle Scholar
  59. 59.
    Gower M (2000) Opt Exp 7(2):56. doi: 10.1364/OE.7.000056 CrossRefGoogle Scholar
  60. 60.
    Heyl P, Olschewski T, Wijnaendts R (2001) Microelectron Eng 57–58:775. doi: 10.1016/s0167-9317(01)00485-3 CrossRefGoogle Scholar
  61. 61.
    Su Y, Shah J, Lin L (2004) J Micromech Microeng 14(3):415. doi: 10.1088/0960-1317/14/3/015 CrossRefGoogle Scholar
  62. 62.
    Piotter V, Hanemann T, Ruprecht R, Haußelt J (1997) Microsyst Technol 3(3):129. doi: 10.1007/s005420050069 CrossRefGoogle Scholar
  63. 63.
    Gornik C (2004) Macromol Symp 217(1):365. doi: 10.1002/masy.200451332 CrossRefGoogle Scholar
  64. 64.
    Chang P, Hwang S (2006) J Appl Polym Sci 102(4):3704. doi: 10.1002/app.24515 CrossRefGoogle Scholar
  65. 65.
    Yoo Y (2009) Curr Appl Phys 9(2, Supplement 1):12. doi: 10.1016/j.cap.2008.12.023
  66. 66.
    Chen S, Jong W, Chang Y, Chang J, Cin J (2006) J Micromech Microeng 16(9):1783. doi: 10.1088/0960-1317/16/9/005 CrossRefGoogle Scholar
  67. 67.
    Xie L, Ziegmann G (2008) Microsyst Technol 14(6):809. doi: 10.1007/s00542-008-0566-7 CrossRefGoogle Scholar
  68. 68.
    McFarland A, Colton J (2005) J Microelectromech Syst 14(6):1375. doi: 10.1109/JMEMS.2005.851853 CrossRefGoogle Scholar
  69. 69.
    Whiteside B et al (2004) Plast Rubber Compos 33:11. doi: 10.1179/146580104225018346
  70. 70.
    Tseng S, Chen Y, Kuo C, Shew B (2005) Microsyst Technol 12(1):116. doi: 10.1007/s00542-005-0014-x CrossRefGoogle Scholar
  71. 71.
    Kim Y, Choi Y, Kang S (2005) Microsyst Technol 11(7):464. doi: 10.1007/s00542-005-0596-3 CrossRefGoogle Scholar
  72. 72.
    Yao D, Kimerling T, Kim B (2006) Polym Eng Sci 46(7):938. doi: 10.1002/pen.20548 CrossRefGoogle Scholar
  73. 73.
    Saito T, Satoh I, Kurosaki Y (2002) Polym Eng Sci 42(12):2418. doi: 10.1002/pen.11128 CrossRefGoogle Scholar
  74. 74.
    Yu M, Young W, Hsu P (2007) Mater Sci Eng A-Struct 460–461:288. doi: 10.1016/j.msea.2007.02.036 CrossRefGoogle Scholar
  75. 75.
    Michaeli W, Klaiber F (2007) In: 4M2007 International Conference on multi-material micro manufacture, Borovets, Bulgary, Taylor and FrancisGoogle Scholar
  76. 76.
    Sha B, Dimov S, Pham D, Griffiths C (2005) In: 4M2005: First International conference on multi-material micro manufactureGoogle Scholar
  77. 77.
    Michaeli W, Opfermann D, Kamps T (2007) Int J Adv Manuf Technol 33(1):206. doi: 10.1007/s00170-007-0951-x CrossRefGoogle Scholar
  78. 78.
    Srirojpinyo C et al (2004) In: NSTI nanotechnology conference, Boston, MA, USA, p 464Google Scholar
  79. 79.
    Tofteberg T, Andreassen E (2008) In: 24th Annual meeting of the polymer processing society PPS-24, Salerno, ItalyGoogle Scholar
  80. 80.
    Mönkkönen K et al (2002) Polym Eng Sci 42(7):1600. doi: 10.1002/pen.11055 Google Scholar
  81. 81.
    Zhiltsova T, Neto V, Ferreira J, Oliveira M (2009) In: ICIT & MPT 2009, International conference, Ljubljana, Slovenia, 4–7 October 2009, p 165Google Scholar
  82. 82.
    Sadiku-Agboola O, Rotimi Sadiku E, Adegbola A, Biotidara O (2011) Mater Sci Appl 2(1):30. doi: 10.4236/msa.2011.21005 Google Scholar
  83. 83.
    Malkin A, Isayev A (eds) (2006) Rheology: concepts, methods, and applications, vol 1. ChemTec Publishing, TorontoGoogle Scholar
  84. 84.
    Chen S, Tsai R, Chien R, Lin T (2005) Int Commun Heat Mass 32(3–4):501. doi: 10.1016/j.icheatmasstransfer.2004.07.004 CrossRefGoogle Scholar
  85. 85.
    Piotter V, Mueller K, Plewa K, Ruprecht R, Hausselt J (2002) Microsyst Technol 8(6):387. doi: 10.1007/s00542-002-0178-6 CrossRefGoogle Scholar
  86. 86.
    Su Y et al (2004) J Micromech Microeng 14(3):415. doi: 10.1088/0960-1317/14/3/015 CrossRefGoogle Scholar
  87. 87.
    Xu G, Yu L, Lee L, Koelling K (2005) Polym Eng Sci 45(6):866. doi: 10.1002/pen.20341 CrossRefGoogle Scholar
  88. 88.
    Lee J, Lee B, Kang T, Kwon T (2010) Polym Eng Sci 50(6):1186. doi: 10.1002/pen.21642 CrossRefGoogle Scholar
  89. 89.
    Rosenbaum E, Hatzikiriakos S (1997) AIChE J 43(3):598. doi: 10.1002/aic.690430305 CrossRefGoogle Scholar
  90. 90.
    Vasco J, Maia J, Pouzada A (2009) J Micromech Microeng 19(10):1. doi: 10.1088/0960-1317/19/10/105012 CrossRefGoogle Scholar
  91. 91.
    Cardozo D (2008) J Reinf Plast Compos 27(18):1963. doi: 10.1177/0731684408092386 CrossRefGoogle Scholar
  92. 92.
    Weng C, Lee W, To S, Jiang B (2009) Int Commun Heat Mass 36(3):213. doi: 10.1016/j.icheatmasstransfer.2008.11.002 CrossRefGoogle Scholar
  93. 93.
    Zhiltsova T, Oliveira M, Vasco J, Pouzada A, Pontes A (2011) In: VI International materials symposium MATERIAIS 2011|XV meeting of SPM, Guimarães, Portugal, 18–20 Apr 2011Google Scholar
  94. 94.
    Yang C, Huang H-X, Castro JM, Yi AY (2011) Polym Eng Sci 51(5):959. doi: 10.1002/pen.21914 CrossRefGoogle Scholar
  95. 95.
    Kim D, Lee K, Kwon T, Lee S (2002) J Micromech Microeng 12(3):236. doi: 10.1088/0960-1317/12/3/307 CrossRefGoogle Scholar
  96. 96.
    Shi F, Zhang X, Li Q, Shen C (2010) In: 9th World Congress on computational mechanics and 4th Asian Pacific congress on computational mechanics, Sydney, Australia, vol 1, p 1Google Scholar
  97. 97.
    Yu L, Lee L, Koelling K (2004) Polym Eng Sci 44(10):1866. doi: 10.1002/pen.20188 CrossRefGoogle Scholar
  98. 98.
    Young W (2005) Microsyst Technol 11(6):410. doi: 10.1007/s00542-004-0474-4 CrossRefGoogle Scholar
  99. 99.
    Nguyen-Chung T, Jüttner G, Löser C, Pham T, Gehde M (2010) Polym Eng Sci 50(1):165. doi: 10.1002/pen.21536 CrossRefGoogle Scholar
  100. 100.
    Kim D (2008) Microsyst Technol 14(9):1581. doi: 10.1007/s00542-007-0553-4 CrossRefGoogle Scholar
  101. 101.
    Keller A (1992) Pure Appl Chem 64(2):193. doi: 10.1351/pac199264020193 CrossRefGoogle Scholar
  102. 102.
    Favaro M, Marinelli A, Farah M, Bretas R (2008) Polym Eng Sci 48(2):257. doi: 10.1002/pen.20858 CrossRefGoogle Scholar
  103. 103.
    Cao J, Wang K, Cao W, Zhang Q, Du R, Fu Q (2009) J Appl Polym Sci 112(3):1104. doi: 10.1002/app.29540 CrossRefGoogle Scholar
  104. 104.
    Fellahi S, Favis B, Fisa B (1996) Polymer 37(13):2615. doi: 10.1016/0032-3861(96)87620-8 CrossRefGoogle Scholar
  105. 105.
    Zhang K, Lu Z (2008) Microsyst Technol 14(2):209. doi: 10.1007/s00542-007-0412-3 CrossRefGoogle Scholar
  106. 106.
    Lu Z, Zhang K (2009) Int J Adv Manuf Technol 40(5):490. doi: 10.1007/s00170-007-1364-6 CrossRefGoogle Scholar
  107. 107.
    Osswald TA, Hernández-Ortiz JP (eds) (2006) Polymer processing: modeling and simulation. Hanser Verlag, CincinnatiGoogle Scholar
  108. 108.
    Chanda M, Roy SK (eds) (2009) Plastics fundamentals, properties and testing. CRC, Boca RatonGoogle Scholar
  109. 109.
    Crawford R (ed) (1998) Plastics engineering. Butterworth-Heinemann, OxfordGoogle Scholar
  110. 110.
    Hemker K, Sharpe W (2007) Annu Rev Mater Res 37(1):93. doi: 10.1146/annurev.matsci.36.062705.134551 CrossRefGoogle Scholar
  111. 111.
    Oliver W, Pharr G (2004) J Mater Res 19(1):3. doi: 10.1557/jmr.2004.19.1.3 CrossRefGoogle Scholar
  112. 112.
    Nguyen-Chung T, Mennig G, Boyanova M, Fakirov S, Baltá Calleja F (2004) J Appl Polym Sci 92(5):3362. doi: 10.1002/app.20335 CrossRefGoogle Scholar
  113. 113.
    Beake B (2006) J Phys D Appl Phys 39(20):4478. doi: 10.1088/0022-3727/39/20/027 CrossRefGoogle Scholar
  114. 114.
    Huang G, Wang B, Lu H (2004) Mech Time-Depend Mater 8(4):345. doi: 10.1007/s11043-004-0440-7 CrossRefGoogle Scholar
  115. 115.
    Huang G, Lu H (2007) Exp Mech 47(1):87. doi: 10.1007/s11340-006-8277-4 CrossRefGoogle Scholar
  116. 116.
    Lu H, Wang B, Ma J, Huang G, Viswanathan H (2003) Mech Time-Depend Mater 7(3):189. doi: 10.1023/B:MTDM.0000007217.07156.9b CrossRefGoogle Scholar
  117. 117.
    VanLandingham MJV, Guthrie W, Meyers G (2001) Macromol Symp 167(1):15. doi: 0.1002/1521-3900(200103)167:1<15:AID-MASY15>3.0.CO;2- CrossRefGoogle Scholar
  118. 118.
    Fang T, Chang W, Tsai S (2005) Microelectr J 36(1):55. doi: 10.1016/j.mejo.2004.10.003 CrossRefGoogle Scholar
  119. 119.
    Poilane C, Delobelle P, Lexcellent C, Hayashi S, Tobushi H (2000) Thin Solid Films 379(1–2):156. doi: 10.1016/s0040-6090(00)01401-2 CrossRefGoogle Scholar
  120. 120.
    Tweedie C, Van Vliet K (2006) J Mater Res 21(6):1576. doi: 10.1557/JMR.2006.0197 CrossRefGoogle Scholar
  121. 121.
    Odegard G, Gates T, Herring H (2005) Exp Mech 45(2):130. doi: 10.1007/bf02428185 CrossRefGoogle Scholar
  122. 122.
    Fischer-Cripps A (ed) (2011) Nanoindentation, 3rd edn. Springer, New YorkGoogle Scholar
  123. 123.
    Liu X, Piotter V (2007) Precis Eng 31(2):162. doi: 10.1016/j.precisioneng.2006.05.001 CrossRefGoogle Scholar
  124. 124.
    Oyen M (2007) Acta Mater 55(11):3633. doi: 10.1016/j.actamat.2006.12.031 CrossRefGoogle Scholar
  125. 125.
    Jee A, Lee M (2010) Polym Test 29(1):95. doi: 10.1016/j.polymertesting.2009.09.009 CrossRefGoogle Scholar
  126. 126.
    Tranchida D, Piccarolo S, Loos J, Alexeev A (2007) Macromolecules 40(4):1259. doi: 10.1021/ma062140k Google Scholar
  127. 127.
    Hinz M et al (2004) Eur Polym J 40(5):957. doi: 10.1016/j.eurpolymj.2004.01.027 CrossRefGoogle Scholar
  128. 128.
    Moldflow® A (2011) Autodesk® Moldflow®. http://usa.autodesk.com/moldflow/. Accessed 17 Aug 2011
  129. 129.
    ABAQUS (2004) ABAQUS interface for Moldflow user’s manualGoogle Scholar
  130. 130.
    Yoo K et al (2003) Fiber Polym 4(2):89. doi: 10.1007/bf02875443 Google Scholar
  131. 131.
    Grujicic M, Sellappan V, Arakere G, Seyr N, Erdmann M (2008) J Mater Process Technol 195(1–3):282. doi: 10.1016/j.jmatprotec.2007.05.016 CrossRefGoogle Scholar
  132. 132.
    Kim S et al (2008) Polym Eng Sci 48(9):1840. doi: 10.1002/pen.21152 CrossRefGoogle Scholar
  133. 133.
    Kröner C, Altenbach H, Naumenko K (2009) Mech Compos Mater 45(3):249. doi: 10.1007/s11029-009-9086-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • T. V. Zhiltsova
    • 1
    Email author
  • M. S. A. Oliveira
    • 1
  • J. A. Ferreira
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of AveiroAveiroPortugal

Personalised recommendations