Journal of Materials Science

, Volume 47, Issue 20, pp 7201–7209 | Cite as

Preparation of antistatic and antimicrobial polyethylene by incorporating of comb-like ionenes

  • Anna Zheng
  • Xiang Xu
  • Huining Xiao
  • Yong Guan
  • Shuzhao Li
  • Dafu Wei
Article

Abstract

The comb-like ionenes with aliphatic side chains were prepared and blended with a low density polyethylene (LDPE) for enhancing the antistatic and antimicrobial properties. The resulting blends were well characterized, particularly based on the surface resistivity (ρs) which revealed the antistatic properties of LDPE/ionene blends. The results showed that the values of ρs decreased 1–5 orders of magnitude after the ionenes were added. Various influencing factors on ρs, including ionene structures, ionene content, and humidity were investigated in detail. Furthermore, the surface and inner structures of resulting blends were characterized by ATR-FTIR and SEM along with water contact angle measurements. The antimicrobial activities of the ionenes and the blended sheets were assessed based on the minimal inhibitory concentration (MIC) values against E. coli and the growth inhibition of E. coli determined by means of a membrane adhering-colony counting method. The results indicated that the ionene with 4-carbon side chains had the lowest MIC value (7.8 μg/mL) and the corresponding blend reached 99.9 % of growth inhibition.

References

  1. 1.
    Thompson SL (1998) EE-Eval Eng 37:62Google Scholar
  2. 2.
    Narkis M, Lidor G, Vaxman A (1999) J Electrostat 47(4):201CrossRefGoogle Scholar
  3. 3.
    Ding YS, Tang HO, Zhang XM, Wu SY, Xiong RY (2008) Eur Polym J 44:1247CrossRefGoogle Scholar
  4. 4.
    Costa JC, Oliveira M, Machado AV, Lanceros-Mendez S, Botelho G (2009) J Appl Polym Sci 112:1595CrossRefGoogle Scholar
  5. 5.
    Li CS, Liang TX, Lu WZ, Tang CH, Hu XQ, Cao MS, Liang J (2004) Compos Sci Technol 64:2089CrossRefGoogle Scholar
  6. 6.
    Mather PJ, Thomas KM (2000) J Mater Sci 32:401. doi:10.1023/A:1018557501174 CrossRefGoogle Scholar
  7. 7.
    Krupa I, Mikova G, Novak I, Janigova I, Nogellova Z, Lednicky F, Prokes J (2007) Eur Polym J 43:2401CrossRefGoogle Scholar
  8. 8.
    Byrne MT, Gun’ko YK (2010) Adv Mater 22:1672CrossRefGoogle Scholar
  9. 9.
    Jin HK, Jae MJ, Sultana T (2010) Mol Cryst Liq Cryst 532:449Google Scholar
  10. 10.
    Omastova M, Kosina S, Pionteck J (1999) Synthetic Met 102:1251CrossRefGoogle Scholar
  11. 11.
    Omastova M, Simon F (2000) J Mater Sci 35:1743. doi:10.1023/A:1004728502591 CrossRefGoogle Scholar
  12. 12.
    Guo DY, Wang JL, Lei JX (2011) J Appl Polym Sci 119:2674CrossRefGoogle Scholar
  13. 13.
    Hausmann K (2002) Plast Addit Compd: 32Google Scholar
  14. 14.
    Münstedt H, Radhesh KC (2005) Biomaterials 26:2081CrossRefGoogle Scholar
  15. 15.
    Damm C, Munsted H, Rosch A (2007) J Mater Sci 42:6067. doi:10.1007/s10853-006-1158-5 CrossRefGoogle Scholar
  16. 16.
    Sanchez-Valdes S, Ortega-Ortiz H, Valle LFRD (2009) J Appl Polym Sci 111:953Google Scholar
  17. 17.
    Zapata PA, Tamayo L, Paez M, Cerda E, Azocar I, Rabagliati FM (2011) Eur Polym J 47:1541CrossRefGoogle Scholar
  18. 18.
    Zhang W, Zhang YH, Ji JH (2007) J Biomed Mater Res A 83:838Google Scholar
  19. 19.
    Ando S, Hioki T, Yamada T, Watanabe N, Higashitani A (2012) J Mater Sci 47:2928. doi:10.1007/s10853-011-6125 CrossRefGoogle Scholar
  20. 20.
    Zhang W, Ji JH, Zhang YH (2007) Appl Surf Sci 253:8981CrossRefGoogle Scholar
  21. 21.
    Zhang W, Zhang YH, Ji JH (2006) Polymer 47:7441CrossRefGoogle Scholar
  22. 22.
    Rembaum A, Noguchi H (1972) Macromolecules 5:169CrossRefGoogle Scholar
  23. 23.
    Williams SR, Borgerding EM, Layman JM, Wang WQ, Winey KI, Long TE (2008) Macromolecules 41:5216CrossRefGoogle Scholar
  24. 24.
    Zelikin AN, Litmanovich AA, Paraschuk VV, Sybatchin AV, Izumrudov VA (2003) Macromolecules 36:2066CrossRefGoogle Scholar
  25. 25.
    Zelikin AN, Izumrudov VA (2002) Macromol Biosci 2:78CrossRefGoogle Scholar
  26. 26.
    Ramirez SM, Layman JM, Long TE (2009) Macromol Biosci 9:1127CrossRefGoogle Scholar
  27. 27.
    Chen L, Yu SY, Kagami Y, Gong JP, Osada Y (1998) Macromolecules 31:787CrossRefGoogle Scholar
  28. 28.
    Pirogov AV, Platonov MM, Shpigun OA (1999) J Chromatogr A 850:53CrossRefGoogle Scholar
  29. 29.
    Pirogov AV, Krokhin OV, Platonov MM, Deryugina YI, Shpigun OA (2000) J Chromatogra A 884:31CrossRefGoogle Scholar
  30. 30.
    Raskop MP, Grimm A, Seubert A (2007) Microchim Acta 158:85CrossRefGoogle Scholar
  31. 31.
    Ziaee Z, Qian LY, Guan Y, Fatehia P, Xiao HN (2010) J Biomat Sci 21:1359CrossRefGoogle Scholar
  32. 32.
    Wang J, Huang N, Yang P, Leng XY (2004) Biomaterials 25:3163CrossRefGoogle Scholar
  33. 33.
    Zhang W, Chu PK, Ji JH, Zhang YH, Fu RKY, Yan Q (2006) Polymer 47:931CrossRefGoogle Scholar
  34. 34.
    Schlögl S, Kramer R, Lenko D, Schrötner H, Schaller R (2011) Eur Polym J 47:2321CrossRefGoogle Scholar
  35. 35.
    Wang XP, Wang XB, Chen ZF (2007) Polymer 48:522CrossRefGoogle Scholar
  36. 36.
    Homes-Farley SR, Reamey RH, Nuzzo R, McCarthy TJ, Whiteside GM (1987) Langmuir 3:799CrossRefGoogle Scholar
  37. 37.
    Zhao ZQ, Chen XL (2006) The technology application of the conductive and antistatic polymer materials. China Textile and Apparel Press, Beijing, pp 163–196Google Scholar
  38. 38.
    Kenawy ER, Worley SD, Broughton R (2007) Biomacromolecules 8:1359CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Anna Zheng
    • 1
  • Xiang Xu
    • 1
  • Huining Xiao
    • 2
  • Yong Guan
    • 1
  • Shuzhao Li
    • 1
  • Dafu Wei
    • 1
  1. 1.Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Department of Chemical EngineeringUniversity of New BrunswickFrederictonCanada

Personalised recommendations