Advertisement

Journal of Materials Science

, Volume 47, Issue 20, pp 7189–7200 | Cite as

Evaluation of strain rate sensitivity by constant load nanoindentation

  • Daniel Peykov
  • Etienne Martin
  • Richard R. ChromikEmail author
  • Raynald Gauvin
  • Michel Trudeau
Article

Abstract

Constant load measurements by nanoindentation offer the potential for measuring strain rate sensitivity from individual features and defects on a submicron scale. However, recent reports reveal a conflicting load dependence (both increasing and decreasing strain rate sensitivity with load) which has yet to be fully explained. In this study, constant load measurements on five materials (Zn, Al, Cu, Ti, and SiO2) were conducted over a range of peak loads, and then compared with both constant strain rate results and conventional values in the literature. The load dependence was found to be caused by the increasing contribution of drift errors throughout the test. A proposed framework, involving higher loads, shorter hold and loading times, and a physically sound fitting method, was found to produce unambiguous results free from load dependencies, with improved correlations to conventional values and reduced standard deviations.

Keywords

Strain Rate Sensitivity Constant Load Displacement Rate Drift Rate Constant Strain Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bhushan B, Li X (2003) Int Mater Rev 48:125CrossRefGoogle Scholar
  2. 2.
    Cheng YT, Cheng CM (2004) Mater Sci Eng, R 44:91CrossRefGoogle Scholar
  3. 3.
    Bull SJ (2005) J Phys D Appl Phys 38:393CrossRefGoogle Scholar
  4. 4.
    Schuh CA, Packard CE, Lund AC (2006) J Mater Res 21:725CrossRefGoogle Scholar
  5. 5.
    Mayo MJ, Nix WD (1988) Acta Metall 36:2183CrossRefGoogle Scholar
  6. 6.
    Lucas BN (1997) PhD thesis, University of Tennessee, Knoxville, TNGoogle Scholar
  7. 7.
    Lucas BN, Oliver WC (1999) Metall Mater Trans A 30:601CrossRefGoogle Scholar
  8. 8.
    Cheng YT, Cheng CM (2001) Philos Mag Lett 81:9CrossRefGoogle Scholar
  9. 9.
    Alkorta J, Martinez-Esnaola JM, Sevillano JG (2008) Acta Mater 56:884CrossRefGoogle Scholar
  10. 10.
    Maier V, Durst K, Mueller J, Backes B, Werner Hoppel H, Goken M (2011) J Mater Res 26:1421CrossRefGoogle Scholar
  11. 11.
    Mayo MJ, Siegel RW, Narayanasamy A, Nix WD (1990) J Mater Res 5:1073CrossRefGoogle Scholar
  12. 12.
    Mayo MJ, Siegel RW, Liao YX, Nix WD (1992) J Mater Res 7:973CrossRefGoogle Scholar
  13. 13.
    Raman V, Berriche R (1992) J Mater Res 7:627CrossRefGoogle Scholar
  14. 14.
    Syed Asif SA, Pethica JB (1998) J Adhes 67:153CrossRefGoogle Scholar
  15. 15.
    Han YD, Jing HY, Nai SML, Xu LY, Tan CM, Wei J (2010) J Electron Mater 39:223CrossRefGoogle Scholar
  16. 16.
    Han YD, Jing HY, Nai SML, Xu LY, Tan CM, Wei CM (2010) Int J Mod Phys B 24:267CrossRefGoogle Scholar
  17. 17.
    Li H, Ngan AHW (2004) J Mater Res 19:513CrossRefGoogle Scholar
  18. 18.
    Li H, Ngan AHW (2005) Scr Mater 52:827CrossRefGoogle Scholar
  19. 19.
    Cao ZH, Lu HM, Meng XK, Ngan AHW (2009) J Appl Phys 105:083521CrossRefGoogle Scholar
  20. 20.
    Ma ZS, Long SG, Zhou YC, Pan Y (2008) Scr Mater 59:195CrossRefGoogle Scholar
  21. 21.
    Cao ZH, Li PY, Lu HM, Huang YL, Zhou YC, Meng XK (2009) Scr Mater 60:415CrossRefGoogle Scholar
  22. 22.
    Wang F, Huang P, Xu KW (2007) Appl Phys Lett 90:161921CrossRefGoogle Scholar
  23. 23.
    Choi IC, Yoo BG, Kim YJ, Seok MY, Wang Y, Jang J (2011) Scr Mater 65:300CrossRefGoogle Scholar
  24. 24.
    Cao Z, Zhang X (2007) Scr Mater 56:249CrossRefGoogle Scholar
  25. 25.
    Huang YJ, Chiu YL, Shen J, Chen JJJ, Sun JF (2009) J Mater Res 24:993CrossRefGoogle Scholar
  26. 26.
    Cao ZH, Li PY, Meng XK (2009) Mater Sci Eng, A 516:253CrossRefGoogle Scholar
  27. 27.
    Janakiraman N, Aldinger F (2010) J Am Ceram Soc 93:821CrossRefGoogle Scholar
  28. 28.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  29. 29.
    Chen J, Bull SJ (2009) Surf Coat Technol 203:1609CrossRefGoogle Scholar
  30. 30.
    Chang SY, Lee YS, Chang TK (2006) Mater Sci Eng, A 423:52CrossRefGoogle Scholar
  31. 31.
    Ma Z, Long S, Pan Y, Zhou Y (2008) J Mater Sci 43:5952. doi: 10.1007/s10853-008-2838-0 CrossRefGoogle Scholar
  32. 32.
    Yoo BG, Oh JH, Kim YJ, Park KW, Lee JC, Jang J (2010) Intermet 18:1898CrossRefGoogle Scholar
  33. 33.
    Shen L, Cheong WCD, Foo YL, Cheng Z (2012) Mater Sci Eng, A 532:505CrossRefGoogle Scholar
  34. 34.
    Wang CL, Zhang M, Nieh TG (2009) J Phys D Appl Phys 42:115405CrossRefGoogle Scholar
  35. 35.
    Choi IC, Yoo BG, Kim YJ, Jang J (2011) J Mater Res 27:3CrossRefGoogle Scholar
  36. 36.
    Wagoner RH (1981) Metall Trans A 12:71Google Scholar
  37. 37.
    Wagoner RH (1984) Metall Trans A 15:1265CrossRefGoogle Scholar
  38. 38.
    Christodoulou N, Jonas JJ (1984) Acta Metall 32:1655CrossRefGoogle Scholar
  39. 39.
    Isaev NV, Grigorova TV, Zabrodin PA (2009) Low Temp Phys 35:898CrossRefGoogle Scholar
  40. 40.
    Hayes RW, Witkin D, Zhou F, Lavernia EJ (2004) Acta Mater 52:4259CrossRefGoogle Scholar
  41. 41.
    Gianola DS, Warner DH, Molinari JF, Hemker KJ (2006) Scr Mater 55:649CrossRefGoogle Scholar
  42. 42.
    Sabirov I, Estrin Y, Barnett MR, Timokhina I, Hodgson PD (2008) Scr Mater 58:163CrossRefGoogle Scholar
  43. 43.
    Sabirov I, Barnett MR, Estrin Y, Hodgson PD (2009) Scr Mater 61:181CrossRefGoogle Scholar
  44. 44.
    Mahmudi R (1995) Scr Metall Mater 32:2061CrossRefGoogle Scholar
  45. 45.
    Oosterkamp LD, Ivankovic A, Venizelos G (2000) Mater Sci Eng, A 278:225CrossRefGoogle Scholar
  46. 46.
    Dao M, Lu L, Shen YF, Suresh S (2006) Acta Mater 54:5421CrossRefGoogle Scholar
  47. 47.
    Wei Q, Cheng S, Ramesh KT, Ma E (2004) Mater Sci Eng, A 381:71CrossRefGoogle Scholar
  48. 48.
    Gray GT, Lowe TC, Cady CM, Valiev RZ, Aleksandrov IV (1997) Nanostruct Mater 9:477CrossRefGoogle Scholar
  49. 49.
    Rittel D, Ravichandran G, Lee S (2002) Mech Mater 34:627CrossRefGoogle Scholar
  50. 50.
    Lu L, Schwaiger R, Shan ZW, Dao M, Lu K, Suresh S (2005) Acta Mater 53:2169CrossRefGoogle Scholar
  51. 51.
    Chen J, Lu L, Lu K (2006) Scr Mater 54:1913CrossRefGoogle Scholar
  52. 52.
    Harding J (1975) Arch Mech 27:715Google Scholar
  53. 53.
    Meyers MA, Subhash G, Kad BK, Prasad L (1994) Mech Mater 17:175CrossRefGoogle Scholar
  54. 54.
    Chichili DR, Ramesh KT, Hemker KJ (1998) Acta Mater 46:1025CrossRefGoogle Scholar
  55. 55.
    Okazaki K, Conrad H (1973) Acta Metall 21:1117CrossRefGoogle Scholar
  56. 56.
    Reed-Hill RE, Iswaran CV, Kaufman MJ (1995) Scr Metall Mater 33:157CrossRefGoogle Scholar
  57. 57.
    Neeraj T, Hou DH, Daehn GS, Mills MJ (2000) Acta Mater 48:1225CrossRefGoogle Scholar
  58. 58.
    Goodall R, Clyne TW (2006) Acta Mater 54:5489CrossRefGoogle Scholar
  59. 59.
    Ashby MF, Verrall RA (1973) Acta Metall 21:149CrossRefGoogle Scholar
  60. 60.
    Nix WD, Gao H (1998) J Mech Phys Solids 46:411CrossRefGoogle Scholar
  61. 61.
    Bhakhri V, Klassen RJ (2006) J Mater Sci 41:2259. doi: 10.1007/s10853-006-7174-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Daniel Peykov
    • 1
  • Etienne Martin
    • 1
  • Richard R. Chromik
    • 1
    Email author
  • Raynald Gauvin
    • 1
  • Michel Trudeau
    • 2
  1. 1.Department of Mining and Materials EngineeringMcGill UniversityMontrealCanada
  2. 2.Materials ScienceInstitut de Recherche d’Hydro-QuebecVarennesCanada

Personalised recommendations