Journal of Materials Science

, Volume 47, Issue 24, pp 8360–8366 | Cite as

Phase separation in monotectic alloys as a route for liquid state fabrication of composite materials

  • I. KabanEmail author
  • M. Köhler
  • L. Ratke
  • R. Nowak
  • N. Sobczak
  • N. Mattern
  • J. Eckert
  • A. L. Greer
  • S. W. Sohn
  • D. H. Kim
HTC 2012


The mechanism of liquid–liquid phase separation and factors determining the solid-state microstructure of monotectic alloys are discussed. The effect of the cooling rate on the phase-separated morphology is shown in examples of Al–In, Al–Pb, Ni–Nb–Y and Zr–Gd–Co–Al alloys solidified by different techniques. A remarkable improvement of the microstructure for the Al91Pb9 hypermonotectic alloy cast with TiB2 particles, which catalyze the phase separation, is demonstrated.


Increase Cool Rate TiB2 Particle Liquid Phase Separation Metastable Region Al2O3 Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study has partly been funded by the German Research Foundation DFG (Contracts No. Ka-3209/1-2, Ra-537/10). The Foundry Research Institute Cracow and the Global Research Laboratory Program of the Korean Ministry of Education, Science and Technology are acknowledged for the support of this study. O. Shuleshova is acknowledged for helpful discussions. B. Korpała, G. Bruzda and A. Tchorz are thanked for technical assistance.


  1. 1.
    Vogel W (1979) Glasschemie. VEB Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  2. 2.
    Kelton KF, Greer AL (2010) Nucleation in condensed matter: applications in materials and biology. Elsevier (Pergamon Materials Series), AmsterdamGoogle Scholar
  3. 3.
    Cahn JW (1968) Trans Metall Soc AIME 242:166Google Scholar
  4. 4.
    Zhao JZ, Ratke L, Feuerbacher B (1998) Model Simul Mater Sci Eng 6:123CrossRefGoogle Scholar
  5. 5.
    Zhao J, Ratke L, Jia J, Li Q (2002) J Mater Sci Technol 18:197Google Scholar
  6. 6.
    Greer SC (1978) Acc Chem Res 11:427CrossRefGoogle Scholar
  7. 7.
    Cahn JW (1969) J Am Chem Soc 52:118Google Scholar
  8. 8.
    Perepezko JH, Galaup C, Cooper KP (1982) In: Rindone GE (ed) Materials processing in reduced gravity environment of space. Elsevier, Amsterdam, p 491Google Scholar
  9. 9.
    Uebber N, Ratke L (1991) Scr Metall Mater 25:1133CrossRefGoogle Scholar
  10. 10.
    Ratke L, Thieringer WK (1985) Acta Metall 33:1793CrossRefGoogle Scholar
  11. 11.
    Ratke L (1987) J Colloid Interface Sci 119:391CrossRefGoogle Scholar
  12. 12.
    Wu M, Ludwig A, Ratke L (2003) Metall Mater Trans A 34:3009CrossRefGoogle Scholar
  13. 13.
    Sobczak N, Nowak R, Radziwill W, Budzioch J, Glenz A (2008) Mater Sci Eng A 495:43CrossRefGoogle Scholar
  14. 14.
    Chatain D, Wynblatt P, de Ruijter M, de Conninck J, Carter C (1999) Acta Mater 47:3049CrossRefGoogle Scholar
  15. 15.
    Porai-Koshits EA, Averjanov VI (1968) J Non-Cryst Solids 1:29CrossRefGoogle Scholar
  16. 16.
    Uhlmann DR, Kolbeck AG (1976) Phys Chem Glasses 17:146Google Scholar
  17. 17.
    Andrikopoulos KS, Arvanitidis J, Dracopoulos V, Christofilos D, Wagner T, Yannopoulos SN (2011) Appl Phys Lett 99:171911CrossRefGoogle Scholar
  18. 18.
    Kündig AA, Ohnuma M, Ping DH, Ohkubo T, Hono K (2004) Acta Mater 52:2441CrossRefGoogle Scholar
  19. 19.
    Park BJ, Chang HJ, Kim DH, Kim WT, Chattopadhyay K, Abinandanan TA, Bhattacharyya (2006) Phys Rev Lett 96:245503CrossRefGoogle Scholar
  20. 20.
    Mattern N, Kühn U, Gebert A, Gemming T, Zinkevich M, Wendrock H, Schultz L (2005) Scr Mater 53:271CrossRefGoogle Scholar
  21. 21.
    Han JH, Mattern N, Kim DH, Eckert J (2011) J Alloy Compd 509S:S42CrossRefGoogle Scholar
  22. 22.
    Mattern N, Shariq A, Schwarz B, Vainio U, Eckert J (2012) Acta Mater 60:1946CrossRefGoogle Scholar
  23. 23.
    Rowlinson SS, Widom B (1982) Molecular theory of capillarity. Clarendon Press, OxfordGoogle Scholar
  24. 24.
    Kaban IG, Hoyer W (2008) Phys Rev B 77:125426CrossRefGoogle Scholar
  25. 25.
    Kaban I, Curiotto S, Chatain D, Hoyer W (2010) Acta Mater 58:3406CrossRefGoogle Scholar
  26. 26.
    Kaban I, Köhler M, Ratke L, Hoyer W, Mattern N, Eckert J, Greer AL (2011) Acta Mater 59:6880CrossRefGoogle Scholar
  27. 27.
    Moiseev J, Zak H, Palkowski H, Tonn B (2005) Aluminium 81:92Google Scholar
  28. 28.
    Ratke L, Brück S, Mathiesen R, Ludwig A, Gruber-Pretzler M, Tonn B, Gzovskyy K, Gránásy L, Tegze G, Ågren J, Hoglund L, Arnberg L, Gust E, Anger G, Lauer M, Garen R, Reifenhäuser B (2007) Trans Indian Inst Metals 60:103Google Scholar
  29. 29.
    Turnbull D (1950) J Appl Phys 21:1022CrossRefGoogle Scholar
  30. 30.
    Greer AL (2010) Scr Mater 62:899CrossRefGoogle Scholar
  31. 31.
    Kaban I, Köhler M, Hoyer W, Ratke L (2010) High Temp High Press 39:347Google Scholar
  32. 32.
    Köhler M, Ratke L, Kaban I, Hoyer W (2011) IOP Conf Ser Mater Sci Eng 27:012005CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • I. Kaban
    • 1
    Email author
  • M. Köhler
    • 2
  • L. Ratke
    • 2
  • R. Nowak
    • 3
  • N. Sobczak
    • 3
  • N. Mattern
    • 1
  • J. Eckert
    • 1
    • 4
  • A. L. Greer
    • 5
  • S. W. Sohn
    • 6
  • D. H. Kim
    • 6
  1. 1.IFW DresdenInstitute for Complex MaterialsDresdenGermany
  2. 2.Institut für Materialphysik im WeltraumDeutsches Zentrum für Luft- und Raumfahrt (DLR)KölnGermany
  3. 3.Center for High-Temperature StudiesFoundry Research InstituteCracowPoland
  4. 4.TU DresdenInstitute of Materials ScienceDresdenGermany
  5. 5.Department of Materials Science & MetallurgyUniversity of CambridgeCambridgeUK
  6. 6.Department of Metallurgical Engineering, Center for Noncrystalline MaterialsYonsei UniversitySeoulKorea

Personalised recommendations