Journal of Materials Science

, Volume 47, Issue 19, pp 6972–6978 | Cite as

Growth and optical properties of Sn–Si nanocomposite thin films

  • Md. Ahamad MohiddonEmail author
  • M. Ghanashyam Krishna


The growth and optical properties of nanocomposite thin films comprising of nanocrystalline Sn and Si are reported. The nanocomposite films are produced by thermal annealing of bilayers of Sn and Si deposited on borosilicate glass substrates at various temperatures from 300 to 500 °C for 1 h in air. X-ray diffraction reveals that the as-deposited bilayers consist of nanocrystalline Sn films with a crystallite size of 30 nm, while the Si thin films are amorphous. There is onset of crystallinity in Si on annealing to 300 °C with the appearance of the (111) peak of the diamond cubic structure. The crystallite size of Si increases from 5 to 18 nm, whereas the Sn crystallite size decreases with increase in annealing temperature. Significantly, there is no evidence for any Sn–Si compound, and therefore it is concluded that the films are nanocomposites of Sn and Si. Measured spectral transmittance curves show that the films have high optical absorption in the as-deposited form which decreases on annealing to 300 °C. The films show almost 80 % transmission in the visible-near infrared region when the annealing temperature is increased to 500 °C. There is concomitant decrease in refractive index from 4.0, at 1750 nm, for the as-deposited film, to 1.88 for the film annealed at 500 °C. The optical band gap of the films increases on annealing (from 1.8 to ~2.9 eV at 500 °C). The Sn-Si nanocomposites have high refractive index, large band gap, and low optical absorption, and can therefore be used in many optical applications.


SnO2 Nanocomposite Film Optical Absorption Edge Nanocomposite Thin Film Inter Planar Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge fruitful discussions with Prof G Dalba and Prof. F Rocca of University of Trento, Mr. Ramakanth, University of Hyderabad for helping in the deposition of films and funding for this work from the DST-ITPAR program. Facilities provided by the DST sponsored Centre for Nanotechnology and UGC-CAS programmers are also gratefully acknowledged.


  1. 1.
    Rumpf K, Granitzer P, Poelt P (2010) J Magn Magn Mater 322:1283CrossRefGoogle Scholar
  2. 2.
    Sharma AK, Gupta BD (2007) J Opt A 9:180CrossRefGoogle Scholar
  3. 3.
    Zide JMO, Bahk JH, Singh R, Zebarjadi M, Zeng G, Lu H, Feser JP, Xu D, Singer SL, Bian ZX, Majumdar A, Bowers JE, Shakouri A, Gossard AC (2010) J Appl Phys 108:123702CrossRefGoogle Scholar
  4. 4.
    Ballesteros JM, Solis J, Serna R, Afonso CN (1999) Appl Phys Lett 74:2791CrossRefGoogle Scholar
  5. 5.
    Ahamad Mohiddon Md, Ghanashyam Krishna M (2011) J Mater Sci 46:2672. doi: 10.1007/s10853-010-5124-x CrossRefGoogle Scholar
  6. 6.
    Mohiddon MA, Naidu KL, Krishna MG, Dalba G, Rocca F (2011) J Nanopart Res 13:5999CrossRefGoogle Scholar
  7. 7.
    Mahendra Kumar KU, Brahma R, Ghanashyam Krishna M, Bhatnagar AK, Dalba G (2007) J Phys 19. doi: 10.1088/0953-8984/19/49/496208
  8. 8.
    Kumar KUM, Ghanashyam Krishna M (2008) J. Nanomater. doi: 10.1155/2008/736534
  9. 9.
    Hultman L, Robertson A, Hentzell HT, Engsstrom I, Psaras PA (1987) J Appl Phys 62:3647CrossRefGoogle Scholar
  10. 10.
    Mohiddon MA, Naidu KL, Dalba G, Rocca F, Krishna MG (2012) Phys Status Solidi C 9:1493CrossRefGoogle Scholar
  11. 11.
    Oliver N, Hartmann AJ (2000) J Appl Phys 88:716CrossRefGoogle Scholar
  12. 12.
    Jeon M, Jeong C, Kamisako K (2010) Mater Sci Technol 26:875CrossRefGoogle Scholar
  13. 13.
    Emoto T, Akimoto K, Ishikawa Y, Ichimiya A, Tanikawa A (2000) Thin Solid Films 369:281CrossRefGoogle Scholar
  14. 14.
    Swanepoel R (1983) J Phys E 16:1214CrossRefGoogle Scholar
  15. 15.
    Dahmen U, Hetherington CJ, Pirouz P, Westmacott KH (1989) Scr Metall 23:269CrossRefGoogle Scholar
  16. 16.
    Roman LS, Valaski R, Canestraro CD, Magalha ECS, Persson C, Ahuja R, da Silva Jr EF, Pepe I, Ferreira da Silva A (2006) Appl Surf Sci 252:5361CrossRefGoogle Scholar
  17. 17.
    Dow JD (1972) Comments Solid State Phys 4:35Google Scholar
  18. 18.
    Dow JD, Redfield D (1972) Phys Rev B 5:594CrossRefGoogle Scholar
  19. 19.
    Hayzelden C, Batstone JL (1993) J Appl Phys 73:8279CrossRefGoogle Scholar
  20. 20.
    Srivastava AK, Sood KN, Kishore R, Naseem HA (2006) Electrochem Solid-State Lett 9:G219CrossRefGoogle Scholar
  21. 21.
    Nast O, Wenham SR (2000) J Appl Phys 88:124CrossRefGoogle Scholar
  22. 22.
    Leonard RT, Koch CC (1992) Nanostruct Mater 1:471CrossRefGoogle Scholar
  23. 23.
    Wang ZM, Wang YJ, Jeurgens LPH, Mittemeijer EJ (2008) Phys Rev Lett 100. doi: 10.1103/PhysRevLett.100.125503
  24. 24.
    Wang ZM, Wang YJ, Jeurgens LPH, Mittemeijer EJ (2008) Phys Rev B 77. doi: 10.1103/PhysRevB.77.045424

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of PhysicsUniversity of HyderabadHyderabadIndia
  2. 2.Department of PhysicsUniversity of TrentoTrentoItaly

Personalised recommendations